Incorporating density‐dependent regulation into impact assessments for seabirds

Author:

Merrall Eve1ORCID,Green Jonathan A.1ORCID,Robinson Leonie A.12,Butler Adam3,Wood Matt J.4ORCID,Newell Mark A.5,Black Julie6,Daunt Francis5,Horswill Catharine78ORCID

Affiliation:

1. School of Environmental Sciences University of Liverpool Liverpool UK

2. Marine Management Organisation Lancaster House, Hampshire Court Newcastle upon Tyne UK

3. Biomathematics and Statistics Scotland Edinburgh UK

4. School of Natural & Social Sciences University of Gloucestershire Cheltenham UK

5. UK Centre for Ecology & Hydrology Penicuik UK

6. Marine Species Team JNCC Support Co Aberdeen UK

7. ZSL Institute of Zoology London UK

8. Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment University College London London UK

Abstract

Abstract Many industries are required to perform population viability analysis (PVA) during the consenting process for new developments to establish potential impacts on protected populations. However, these assessments rarely account for density‐dependent regulation of demographic rates. Excluding density‐dependent regulation from PVA‐based impact assessments is often assumed to provide a maximum estimate of impact and therefore offer a precautionary approach to assessment. However, there is also concern that this practice may unnecessarily impede the development of important industries, such as offshore renewable energy. In this study, we assess density‐dependent regulation of breeding success in 31 populations of seabird. We then quantify the strength and form of this regulation using eight different formulations. Finally, we use PVA to examine how each formulation influences the recreation of observed dynamics (i.e. model validation), as well as the predicted absolute and relative population response to an extrinsic threat (i.e. model projection). We found evidence of both negative (n = 3) and positive (n = 5) regulation of seabird breeding success. In populations exhibiting negative regulation, excluding density‐dependent regulation from PVA‐based impact assessment allowed uncontrolled population growth, such that model outcomes became biologically implausible. By contrast, in populations exhibiting positive regulation, excluding density‐dependent regulation provided an appropriate reconstruction of observed dynamics, but population decline was underestimated in some populations. We find that multiple formulations of density dependence perform comparably at the detection, validation and projection stages of analysis. However, we tentatively recommend using a log‐linear or Weibull distribution to describe density‐dependent regulation of seabird breeding success in impact assessments to balance accuracy with caution. Finally, we show that relative PVA metrics of impact assessment cannot necessarily be used to overcome PVA misspecification by assuming density independence in positively regulated populations. Synthesis and applications: We suggest that a density‐dependent approach when performing PVA‐based assessments for seabird populations will prevent biologically unrealistic, unconstrained population growth and therefore ensure meaningful PVA metrics in populations experiencing negative regulation. It will also maintain a precautionary approach for populations experiencing positive regulation, crucial when estimating impacts for these more vulnerable populations. These conclusions have immediate international application within the consenting processes for marine industries.

Funder

Research England

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3