Boosting propagule transport models with individual‐specific data from mobile apps

Author:

Fischer Samuel M.12ORCID,Ramazi Pouria3ORCID,Simmons Sean4,Poesch Mark S.5ORCID,Lewis Mark A.16ORCID

Affiliation:

1. Department of Mathematical and Statistical Sciences University of Alberta Edmonton Alberta Canada

2. Department of Ecological Modelling Helmholtz‐Centre for Environmental Research—UFZ Leipzig Germany

3. Department of Mathematics and Statistics Brock University St. Catharines Ontario Canada

4. Angler's Atlas, Goldstream Publishing Prince George British Columbia Canada

5. Department of Renewable Resources University of Alberta Edmonton Alberta Canada

6. Department of Biological Sciences University of Alberta Edmonton Alberta Canada

Abstract

Abstract Management of invasive species and pathogens requires information about the traffic of potential vectors. Such information is often taken from vector traffic models fitted to survey data. Here, user‐specific data collected via mobile apps offer new opportunities to obtain more accurate estimates and to analyse how vectors' individual preferences affect propagule flows. However, data voluntarily reported via apps may lack some trip records, adding a significant layer of uncertainty. We show how the benefits of app‐based data can be exploited despite this drawback. Based on data collected via an angler app, we built a stochastic model for angler traffic in the Canadian province Alberta. There, anglers facilitate the spread of whirling disease, a parasite‐induced fish disease. The model is temporally and spatially explicit and accounts for individual preferences and repeating behaviour of anglers, helping to address the problem of missing trip records. We obtained estimates of angler traffic between all subbasins in Alberta. The model's accuracy exceeds that of direct empirical estimates even when fewer data were used to fit the model. The results indicate that anglers' local preferences and their tendency to revisit previous destinations reduce the number of long interwaterbody trips potentially dispersing whirling disease. According to our model, anglers revisit their previous destination in 64% of their trips, making these trips irrelevant for the spread of whirling disease. Furthermore, 54% of fishing trips end in individual‐specific spatially contained areas with mean radius of 54.7 km. Finally, although the fraction of trips that anglers report was unknown, we were able to estimate the total yearly number of fishing trips in Alberta, matching an independent empirical estimate. Policy implications. We make two major contributions: (1) we provide a model that uses mobile app data to boost the mechanistic accuracy of classic propagule transport models, and (2) we demonstrate the importance of individual‐specific behaviour of vectors for propagule transport. Ignoring vectors' local preferences and their tendency to revisit previous destinations can lead to significant overestimates of vector traffic and biased estimates of propagule flows. This has clear implications for the management of invasive species and animal diseases.

Funder

Alberta Environment and Parks

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-probabilistic surveys and sampling in the human dimensions of fisheries;Reviews in Fish Biology and Fisheries;2024-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3