Soil biota modulate the effects of microplastics on biomass and diversity of plant communities

Author:

Fu Yanmei1ORCID,Oduor Ayub M. O.12ORCID,Jiang Ming1,Liu Yanjie1ORCID

Affiliation:

1. Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun China

2. Department of Applied Biology Technical University of Kenya Nairobi Kenya

Abstract

Abstract The use of biodegradable plastics has been proposed as an alternative to mitigate the pollution problem caused by traditional non‐biodegradable plastics. However, the relative impacts of both types of microplastics on plant community productivity and diversity is not known. Moreover, it is unclear whether soil biota can differentially mediate the impacts of biodegradable and non‐biodegradable microplastics on plant communities. In this study, we investigated the effects of biodegradable and non‐biodegradable microplastics on plant community biomass production and diversity, and whether soil biota mediate these effects. We employed a fully crossed factorial design, growing six plant communities in the presence or absence of 10 individual microplastics, and in live soil versus sterilized soil. We hypothesized that: (1) Biodegradable microplastics have a less negative effect on plant community biomass production and diversity compared to non‐biodegradable microplastics. (2) Soil biota differentially mediate the effects of biodegradable and non‐biodegradable microplastics on plant community biomass production and diversity. Statistical analyses that included all 10 microplastics yielded two main findings. First, live soil ameliorated the negative effects of biodegradable microplastics on community shoot biomass. Second, the presence of microplastics, rather than their biodegradability, significantly reduced community diversity. Separate analyses of individual microplastics suggest that these patterns were driven by specific microplastics. The biodegradable microplastic polybutylene succinate (PBS) was the main driver of the pattern observed in community shoot biomass. In contrast, the biodegradable microplastic polycaprolactone (PCL) and non‐biodegradable microplastics ethylene‐vinyl acetate (EVA) and polyvinyl chloride (PVC) were the main drivers of the pattern observed in community diversity. Further analyses excluding PBS from the global models, but including the other nine microplastics, revealed no significant differences in community shoot biomass and diversity between biodegradable and non‐biodegradable microplastics in live versus sterilized soil. Synthesis and applications. Our findings suggest that biodegradable microplastics, often considered environmentally friendly, are not necessarily less harmful than non‐biodegradable microplastics to the growth and diversity of plant communities. Some individual biodegradable microplastics, such as PBS, still pose significant ecological risks to plant community structure and productivity. However, the results also suggest that soil biota may mitigate the negative effects of some biodegradable microplastics.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3