Avian phylogenetic and functional diversity are better conserved by land‐sparing than land‐sharing farming in lowland tropical forests

Author:

Pérez Giovanny12ORCID,Mills Simon C.13ORCID,Socolar Jacob B.45ORCID,Martínez‐Revelo Diego E.6ORCID,Haugaasen Torbjørn4ORCID,Gilroy James J.37ORCID,Edwards David P.12ORCID

Affiliation:

1. Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield UK

2. Department of Plant Sciences and Conservation Research Institute University of Cambridge Cambridge UK

3. Rainforest Builder London UK

4. Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

5. NCX, Inc San Francisco California USA

6. Grupo de Investigación en Ecología de Agroecosistemas y Hábitats Naturales (GEAHNA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas Universidad del Valle Cali Colombia

7. School of Environmental Sciences University of East Anglia Norwich UK

Abstract

Abstract The transformation of natural habitats for farming is a major driver of tropical biodiversity loss. To mitigate impacts, two alternatives are promoted: intensifying agriculture to offset protected areas (land sparing) or integrating wildlife‐friendly habitats within farmland (land sharing). In the montane and dry tropics, phylogenetic and functional diversity, which underpin evolutionary values and the provision of ecosystem functioning and services, are best protected by land sparing. A key question is how these components of biodiversity are best conserved in the more stable environments of lowland moist tropical forests. Focusing on cattle farming within the Colombian Amazon, we investigated how the occupancy of 280 bird species varies between forest and pasture spanning gradients of wildlife‐friendly features. We then simulated scenarios of land‐sparing and land‐sharing farming to predict impacts on phylogenetic and functional diversity metrics. Predicted metrics differed marginally between forest and pasture. However, community assembly varied significantly. Wildlife‐friendly pastures were inadequate for most forest‐dependent species, while phylogenetic and functional diversity indices showed minimal variation across gradients of wildlife‐friendly features. Land sparing consistently retained higher levels of Faith's phylogenetic diversity (~30%), functional richness (~20%) and evolutionarily distinct lineages (~40%) than land sharing, and did so across a range of landscape sizes. Securing forest protection through land‐sparing practices remains superior for conserving overall community phylogenetic and functional diversity than land sharing. Synthesis and applications: To minimise the loss of avian phylogenetic diversity and functional traits from farming in the Amazon, it is imperative to protect large blocks of undisturbed and regenerating forests. The intensification required within existing farmlands to make space for spared lands while meeting agricultural demand needs to be sustainable, avoiding long‐term negative impacts on soil quality and other ecosystem services. Policies need to secure the delivery of both actions simultaneously.

Funder

Norges Forskningsråd

Natural Environment Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3