Remote sensing for rangeland conservation monitoring: Impacts of livestock removal after 15 years

Author:

Retallack Angus1ORCID,Rifai Sami1ORCID,Finlayson Graeme12ORCID,Ostendorf Bertram1ORCID,Lewis Megan1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology The University of Adelaide Adelaide South Australia Australia

2. Bush Heritage Australia Melbourne Victoria Australia

Abstract

Abstract Degradation from overgrazing of global arid rangelands is of significant concern for this widespread terrestrial ecosystem, and the people who rely on its sustainable use. Addressing this degradation requires a better understanding of how livestock removal and conservation management actions affect the rehabilitation of land condition. However, the dominant effect of climate and meteorological variability on arid vegetation makes isolating management‐induced change a difficult task. We present an analytically simple method for measuring relative land condition by assessing differences in remote‐sensing‐derived persistent fractional vegetation between adjacent stocked and destocked regions over time. The 22‐year observation period focusses on vegetation recovery at a long‐established sheep station after the removal of livestock and the introduction of conservation‐focussed management. The study region, in the southern Australian arid rangelands, comprises sparsely vegetated chenopod shrublands and acacia woodlands across low‐lying plains. Comparison is made to immediately surrounding stocked properties in a spatial design where climate and biogeographic variables remain consistent across the study area. We found an unequivocal relative increase in vegetation cover, and reduction of bare ground cover at the destocked property that became evident approximately 8 years after a reduction in grazing pressure. Distinctly higher persistent vegetation cover was maintained, even during periods of drought. Non‐photosynthetic vegetation cover was most indicative of long‐term change and increased by 1.1% relative to surrounding areas. Photosynthetic vegetation cover increased by 0.5%, while bare ground cover decreased by 2.1%. These cover changes, particularly in the non‐photosynthetic vegetation and bare ground components spatially coincide with the fenced boundary of the destocked property. Synthesis and applications: The ability to quantify management‐related impacts in land condition using freely available remote sensing data could support improved management by all stakeholders in these regions. The method leverages readily available satellite remote sensing data in a study design that is not dependent on large geospatial and climatic datasets that are not necessarily available in remote regions.

Funder

Thyne Reid Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3