A Measurement of the Adaptation of Color Vision to the Spectral Environment

Author:

Boker Steven M.1

Affiliation:

1. University of Notre Dame

Abstract

An exploratory factor analysis of the reflectance spectral distributions of a sample of natural and man-made objects yields a factor pattern remarkably similar to psychophysical color-matching curves. The goodness-of-fit indices from a maximum likelihood confirmatory factor model with fixed factor loadings specified by empirical trichromatic color-matching data indicate that the human visual system performs near to an optimum value for an ideal trichromatic system composed of three linear components. An unconstrained four-factor maximum likelihood model fits significantly better than a three-factor unconstrained model, suggesting that a color metric is better represented in four dimensions than in a three-dimensional space. This fourth factor can be calculated as a nonlinear interaction term between the first three factors: thus, a trichromatic input is sufficient to compute a color space of four dimensions. The visual system may exploit this nonlinear dependency in the spectral environment in order to obtain a four-dimensional color space without the biological cost of a fourth color receptor.

Publisher

SAGE Publications

Subject

General Psychology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Where meanings arise and how: Building on Shannon's foundations;Mind & Language;2020-05-19

2. Our understanding of neural codes rests on Shannon's foundations;Behavioral and Brain Sciences;2019

3. Is coding a relevant metaphor for the brain?;Behavioral and Brain Sciences;2018-07-16

4. Multi-primary design of spectrally accurate displays;Journal of the Society for Information Display;2007

5. Richer color experience in observers with multiple photopigment opsin genes;Psychonomic Bulletin & Review;2001-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3