Affiliation:
1. University of Notre Dame
Abstract
Parallel to the development in regression diagnosis, this paper defines good and bad leverage observations in factor analysis. Outliers are observations that deviate from the factor model, not from the center of the data cloud. The effects of each kind of outlying observations on the normal distribution-based maximum likelihood estimator and the associated likelihood ratio statistic are studied through analysis. The distinction between outliers and leverage observations also clarifies the roles of three robust procedures based on different Mahalanobis distances. All the robust procedures are designed to minimize the effect of certain outlying observations. Only the robust procedure with a residual-based distance properly controls the effect of outliers. Empirical results illustrate the strength or weakness of each procedure and support those obtained in analysis. The relevance of the results to general structural equation models is discussed and formulas are provided.
Subject
Sociology and Political Science
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献