Improving the accuracy of models to map alpine grassland above‐ground biomass using Google earth engine

Author:

Shi Yan1ORCID,Gao Jay1,Brierley Gary1ORCID,Li Xilai2,Perry George L. W.1ORCID,Xu Tingting3

Affiliation:

1. School of Environment the University of Auckland Auckland 1010 New Zealand

2. State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Xining 810016 China

3. School of Software Engineering Chongqing University of Posts and Telecommunications Chongqing 400044 China

Abstract

AbstractAccurate modelling and mapping of alpine grassland aboveground biomass (AGB) are crucial for pastoral agriculture planning and management on the Qinghai Tibet Plateau (QTP). This study assessed the effectiveness of four popular models (traditional multiple linear regression (MLR), support vector machine (SVM), artificial neural network (ANN), and deep neural network (DNN)) with various input combinations (geospatial variables [GV], vegetation types [VT], field measurements [FM], meteorological variables [MV] and observation time [OT]) for AGB estimation based on a new framework for AGB modelling and mapping using Google Earth Engine. The results showed that the input feature of GV had a poor performance in AGB estimation (0.121 < R2 < 0.591). FM improved the accuracy the most when incorporated with GV (0.815 < R2 < 0.833). Although MV, VT and OT improved the accuracy (R2) only by 0.112–0.216 with an importance rank order of MV > VT > OT for machine learning models, their outputs could be used to map AGB. Grass AGB was less accurately predicted than shrub AGB, but the pooling of both VTs improved estimation accuracy (R2) by 0.171–0.269. The performance of the models followed the ranked order of DNN > ANN > SVM > MLR. DNN had the highest accuracy (R2 = 0.818) using all non‐field measured variables (excluding FM) as the inputs, and it was successfully applied to a new dataset (not associated with the data used in the training and testing) with aR2of 0.676. This study presents an effective and operational framework for modelling and mapping grassland AGB. Accordingly, it provides the scientific foundations to determine of sustainable grazing carrying capacity in alpine grasslands.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3