Deep neural network aided cohesive zone parameter identifications through die shear test in electronic packaging

Author:

Zhao Libo1,Dai Yanwei12ORCID,Wei Jiahui1,Qin Fei12

Affiliation:

1. Institute of Electronics Packaging Technology and Reliability, Faculty of Materials and Manufacturing Beijing University of Technology Beijing China

2. Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing Beijing University of Technology Beijing China

Abstract

AbstractThe die shear test is a feasible and conventional method to characterize the shear strength of die‐attaching layer materials in electronic packaging. A new method for determining cohesive zone model (CZM) parameters using deep neural networks (DNN) and die shear tests is proposed, different from classical fracture framework or lap shear test‐based methods. With the sintered nano‐silver die shear test, the results show that the bilinear CZM inversion results agree well with the experimental results. It is found that the DNN model has high accuracy in predicting and identifying the maximum shear traction strength τmax, separation displacement of the interface δf, and the interface stiffness k1 of CZM parameters for sintered nano‐silver adhesive layer through die shear test load versus displacement curves. The presented DNN‐aided inverse identifying method through the die shear test in this paper could provide an alternative and convenient method for extracting CZM parameters of various kinds of adhesive materials in electronic packaging.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference61 articles.

1. Silicon Carbide Power Transistors: A New Era in Power Electronics Is Initiated

2. A Survey of Wide Bandgap Power Semiconductor Devices

3. High‐temperature electronics pose design and reliability challenges;Watson J;Analog Dialogue,2012

4. High performance silicon carbide power packaging‐past trends, present practices and future directions;Seal S;Energies,2017

5. Bimodal Sintered Silver Nanoparticle Paste with Ultrahigh Thermal Conductivity and Shear Strength for High Temperature Thermal Interface Material Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3