Comparative effects of drought stress on leaf gas exchange, foliar ABA and leaf orientation in four grapevine cultivars grown in Northern Italy

Author:

Gaiotti Federica1ORCID,Nerva Luca1,Fila Gianni2,Lovat Lorenzo1,Belfiore Nicola1,Chitarra Walter1ORCID

Affiliation:

1. Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA‐VE) Conegliano (TV) Italy

2. Research Centre Agriculture and Environment, Council for Agricultural Research and Economics, Sericulture Laboratory Padova Italy

Abstract

AbstractDrought tolerance varies greatly across Vitis vinifera cultivars, depending on physiological responses and structural and morphological adaptations. In this study, responses to water stress were examined in three extensively cultivated varieties from Northern Italy. Over the course of two seasons, mature potted vines were subjected to a 12 or 13‐day period of water restriction. Vine water relations were investigated using measures of water potential, gas exchanges, and leaf ABA content. Leaf angle response to increasing water stress was analysed in the four cultivars as a mechanism that improves stress tolerance. Different physiological responses were observed among cultivars, suggesting a near‐isohydric water‐use strategy for Moscato and a near‐anisohydric one for Garganega, Glera and Merlot. Results of leaf ABA analysis highlighted a variability among the studied varieties, indicating higher contents and lower sensitivity to ABA for the anisohydric ones. In all varieties, a similar increase in midday leaf inclination was observed in response to decreasing stem water potentials, indicating that leaf angle adjustments may represent a common adaptive response to drought. These findings increase the understanding of the leaf physiological and structural mechanisms that contribute to water stress tolerance in grapevine, supporting a more efficient cultivar selection to cope with the expected changes in Mediterranean climate.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3