Crop type rather than production method determines functional trait composition of insect communities on arable land in boreal agricultural landscapes

Author:

Toivonen Marjaana1ORCID,Huusela Erja2,Hyvönen Terho2,Järvinen Ari3,Kuussaari Mikko1

Affiliation:

1. Finnish Environment Institute (Syke) Helsinki Finland

2. Natural Resources Institute Finland (Luke) Jokioinen Finland

3. Natural Resources Institute Finland (Luke) Jyväskylä Finland

Abstract

Abstract To understand the potential consequences of arable land use changes for insect conservation and ecosystem functioning, it is fundamental to know how insect species with different functional traits respond to crop choice and production method. This study examined the effects of crop type and production method on functional traits of butterfly, bumblebee and carabid beetle communities using species abundance data from 78 fields in Southern Finland. Surrounding landscape composition was also accounted for. The studied traits were associated with dispersal capacity, habitat or diet specialization and phenology—the key determinants modifying species responses to agricultural disturbances and land use changes. Butterfly habitat breadth was narrowest and wingspan shortest in long‐term fallows. Fallows also supported the highest share of butterflies overwintering in early development stages and bumblebees with late‐emerging queens. The tongue length of bumblebees was longest in organic oat fields, probably due to flowering weeds with long corolla. For carabid beetles, the proportion of poor flyers and carnivores was highest in perennial crops and fallows. Carabid beetles overwintering as adults were relatively more abundant in organic than in conventional production, probably due to more intensive tillage in organic fields. In all insect groups, poor dispersers and/or specialists decreased with increasing arable land cover in the surrounding landscape. Increasing the area of long‐term fallows and perennial crops and enhancing within‐field plant diversity while maintaining landscape heterogeneity would promote insect species sensitive to agricultural disturbances and land use changes and their associated ecosystem services in boreal farmland.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3