Pervasive shock melting at >65 GPa in a Martian basalt, the shergottite Northwest Africa 14672

Author:

Hewins R. H.12ORCID,Leroux H.3,Jacob D.3,Pont S.1,Beyssac O.1,Malarewicz V.1,Lorand J.‐P.4ORCID,Zanetta P.‐M.5,Zanda B.1

Affiliation:

1. IMPMC, MNHN, UMR CNRS 7590, Sorbonne Université Paris France

2. Earth and Planetary Sciences, Rutgers University Piscataway New Jersey USA

3. CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité Matériaux et Transformations, Univ. Lille Lille France

4. LPG Nantes, UMR CNRS 6112, Univ. Nantes Nantes France

5. Lunar and Planetary Laboratory, University of Arizona Tucson Arizona USA

Abstract

AbstractShergottites have provided abundant information on the volcanic and impact history of Mars. Northwest Africa (NWA) 14672 contributes to both of these aspects. It is a vesicular ophitic depleted olivine–phyric shergottite, with average plagioclase An61Ab39Or0.2. It is highly ferroan, with pigeonite compositions En49‐25Fs41‐61Wo10‐14like those of basaltic shergottites, for example, NWA 12335. Olivine (Fo53‐15) has discrete ferroan overgrowths, more ferroan when in contact with plagioclase than when enclosed by pyroxene. The pyroxene (a continuum of augite, subcalcic augite, and pigeonite) is patchy, with ragged “cores” enveloped or invaded by ferroan pyroxene. Magma mixing may be responsible for capture of olivine and formation of pyroxene mantles. The plagioclase is maskelynite‐like in appearance, but the original laths were (congruently) melted and the melt partly crystallized as fine dendrites. Most of the 14% vesicles occur within plagioclase. Olivine, pyroxene, and ilmenite occur in part as fine aggregates crystallized after congruent melting with limited subsequent liquid mixing. There are two fine‐grained melt components, barred plagioclase with interstitial Fe‐bearing phases, and glass with olivine dendrites, derived by melting of mainly plagioclase and mainly pyroxene, respectively. Rare silica particles contain coesite and/or quartz, and silica glass. The rock has experienced >50% melting, compatible with peak pressure >~65 GPa. It is the most highly shocked shergottite so far, at shock stage S6/7. It may belong to the group of depleted shergottites ejected at ~1 Myr from Tooting Crater.

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3