The antioxidant effect of tetrahedral framework nucleic acid‐based delivery of small activating RNA targeting DJ‐1 on retinal oxidative stress injury

Author:

Wu Qiaowei1ORCID,Zhu Jingyi1,Zhang Xianggui1,Xu Xiaoxiao2,Luo Delun2,Lin Yunfeng3ORCID,Yan Ming1,Song Yanping1ORCID

Affiliation:

1. Department of Ophthalmology General Hospital of Central Theater Command Wuhan China

2. Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China

3. Department of Maxillofacial Surgery, State Key Laboratory of Oral Diseases West China Hospital of Stomatology Chengdu China

Abstract

AbstractAge‐related macular degeneration (AMD) and diabetic retinopathy (DR) are the world's leading causes of blindness. The retinal pigment epithelium (RPE) and vascular endothelial cell exposed to oxidative stress is the major cause of AMD and DR. DJ‐1, an important endogenous antioxidant, its overexpression is considered as a promising antioxidant treatment for AMD and DR. Here, we modified the tetrahedral frame nucleic acids (tFNAs) with DJ‐1 saRNAs as a delivery system, and synthesized a novel nanocomplex (tFNAs‐DJ‐1 saRNAs). In vitro studies show that tFNAs‐DJ‐1 saRNAs can efficiently transfer DJ‐1 saRNAs to human umbilical vein endothelial cells (HUVECs) and ARPE‐19s, and significantly increased their cellular DJ‐1 level. Reactive oxygen species expression in H2O2‐treated HUVECs and ARPE‐19s were decreased, cell viability was enhanced and cell apoptosis were inhibited when tFNAs‐DJ‐1 saRNAs were delivered. Moreover, tFNAs‐DJ‐1 saRNAs preserved mitochondrial structure and function under oxidative stress conditions. In the aspect of molecular mechanism, tFNAs‐DJ‐1 saRNAs activated Erk and Nrf2 pathway, which might contribute to its protective effects against oxidative stress damage. To conclude, this study shows the successfully establishment of a simple but effective delivery system of DJ‐1 saRNAs associated with antioxidant effects in AMD and DR, which may be a promising agent for future treatment in oxidative stress‐related retinal disorders.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3