Affiliation:
1. Biopharmacy, Department of Pharmaceutical Sciences University of Bas Basel Switzerland
Abstract
AbstractThe blood–brain barrier (BBB) is a structure mainly formed by brain capillary endothelial cells (BCEC) whose role is to regulate the exchange of compounds between the blood and the brain. In this process efflux and uptake transporters play a key role. Aim of this study was to compare the two previously established cell lines hCMEC/D3 and hBMEC as BBB cell models for the application of an adenoviral system to transiently express OATP2B1 and Pgp. Comparison of hCMEC/D3 and hBMEC mRNA and protein levels of BBB markers showed a unique expression pattern for each cell line. While showing similar expression of the efflux transporter BCRP, transferrin receptor (TFRC) and of the tight junctions proteins Occludin and ZO‐1, hCMEC/D3 displayed higher levels of the endothelial marker PECAM1, VE‐cadherin, Von Willebrand Factor (VWF) and of the efflux transporter Pgp. Moreover, measuring integrity of the monolayer by determining the Trans‐Endothelial Electrical Resistance (TEER), electrical capacitance (CCl), and inulin apparent permeability coefficient (Papp) revealed higher TEER and lower CCl for hBMEC but comparable Papp in the two cell lines. Following adenoviral infection, enhanced OATP2B1 and Pgp expression and functionality could be observed only in hBMEC. Importantly, the adenoviral expression system did not affect expression of BBB markers and permeability in both cell lines. Taken together, our results provide first evidence that hBMEC is an applicable human BBB cell model in which adenoviral infection can be used to transiently express and investigate transporters of interest.image