Effects of litter amount and seed sowing position on seedling emergence and growth of hemiparasitic Rhinanthus species under drought stress

Author:

Zimmerbeutel A.1ORCID,Diekötter T.1,Reck H.1,Nissen H.1,Wiedmann L. J.1,Donath T. W.1

Affiliation:

1. Department of Landscape Ecology, Institute of Natural Resource Conservation Kiel University Kiel Germany

Abstract

Abstract Roadside vegetation in Central Europe is mostly species‐poor and dominated by a few grass species. Hemiparasitic plant species, including Rhinanthus spp., might effectively restrict grass growth, thereby making space for light‐dependent herb species. Despite the significance of abiotic site conditions for plant establishment in general, their effects on Rhinanthus establishment are less well known. We investigated combined effects of water availability, litter amount and seed position within litter on Rhinanthus seedling emergence and growth. Two parallel greenhouse experiments were conducted with R. angustifolius and R. minor. In these, we tested the impact of 200 or 400 g litter·m−2 with seeds sown beneath or on top of a litter layer under constantly humid or intermittently dry conditions on seedling emergence and biomass production of Rhinanthus. Presence of litter positively affected Rhinanthus seedling emergence when sown beneath the litter layer and reduced negative effects of water deficiency. Sowing beneath a litter layer increased seedling emergence by 157%, with similar effects at 200 and 400 g litter·m−2. Water level did not affect biomass production. Compared to R. minor, R. angustifolius had higher mean biomass, and its seedlings emerged earlier and in higher numbers. Our results indicate that Rhinanthus spp. react similarly to litter as non‐hemiparasitic plant species from temperate grasslands. Litter presence positively influenced Rhinanthus seedling emergence and growth under intermittently dry conditions. Its hemiparasitic characteristics might reduce drought impacts on biomass production. To ensure seed contact with the soil surface, seeds should be sown when no litter is present, or mulching should occur post‐sowing.

Funder

Bundesamt für Naturschutz

Publisher

Wiley

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3