A B‐box transcription factor OsBBX17 regulates saline‐alkaline tolerance through the MAPK cascade pathway in rice

Author:

Shen Tao1ORCID,Xu Fengjuan1,Chen Dan1,Yan Runjiao1,Wang Qingwen2,Li Kaiyue1,Zhang Gang1,Ni Lan1ORCID,Jiang Mingyi1ORCID

Affiliation:

1. College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture Nanjing Agricultural University Nanjing 210095 China

2. College of Bioscience and Biotechnology Yangzhou University Yangzhou 225009 China

Abstract

Summary Rice OsBBX17 encodes a B‐box zinc finger transcription factor in which the N‐terminal B‐box structural domain interacts with OsMPK1. In addition, it directly binds to the G‐box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline‐alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1‐mediated mitogen‐activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr‐95 site. It reduced OsBBX17 DNA‐binding activity and enhanced saline‐alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17‐KO had an excellent saline‐alkaline tolerance, whereas the opposite was in OsBBX17‐OE. In addition, overexpression of OsMPK1 significantly improved saline‐alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1‐KO caused extreme saline‐alkaline sensitivity, even a quick death. OsBBX17 was validated in saline‐alkaline tolerance from two independent aspects, transcriptional level and post‐translational protein modification, unveiling a mechanistic framework by which OsMPK1‐mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+/K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline‐alkaline stress via B‐box transcription factors for the genetic engineering of saline‐alkaline tolerant crops.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3