From viral load to survival: Unveiling new genetic links for resistance against PMCV in Atlantic Salmon (Salmo salar)

Author:

Mogahadam Hooman K.1,Røsæg Magnus Vikan2

Affiliation:

1. Benchmark Genetics Norway AS Bergen Norway

2. SalMar Farming AS Kverva Norway

Abstract

AbstractThe infectious agent piscine myocarditis virus (PMCV) causes cardiomyopathy syndrome (CMS) and is responsible for substantial mortality and economic losses in the Atlantic salmon (Salmo salar) farming industry. Previous research has demonstrated that breeding for resistance against PMCV is an effective approach to mitigate the disease's impact. In this study, a new quantitative trait locus (QTL) is described on chromosome 23, together with previously described QTLs on chromosomes 12 and 27. The findings are based on two genome‐wide association studies conducted on two different year‐classes of Atlantic salmon of the Rauma strain. In this study, we utilized data from an experimental challenge trial with the viral load as the phenotype and a field outbreak of CMS with survival data as the phenotype. The estimated SNP‐based heritability was 0.55 and 0.44 in the two studies, respectively. In the infection trial, the top associated SNP on chromosome 23 accounted for approximately 46% of the genetic and 25.53% of the phenotypic variations in the viral load. In the field outbreak, we identified a QTL on the same genomic region of chromosome 23. The most significantly associated marker on this chromosome explained 13.57% and 5.97% of the genetic and phenotypic variations. The QTL on chromosome 23 is in proximity to delta‐5 fatty acyl desaturase and fatty acid desaturase 2 genes, both of which play a role in the production of polyunsaturated fatty acids. This proximity is particularly interesting as it offers valuable insights into enhancing our understanding of resistance against PMCV.

Publisher

Wiley

Subject

Veterinary (miscellaneous),Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3