Affiliation:
1. Department of Civil Engineering McMaster University Hamilton Ontario Canada
2. Department of Computing and Software McMaster University Hamilton Ontario Canada
Abstract
AbstractRiver ice breakups carry the potential for high flows and flooding and are of great interest to accurately predict. A challenge in forecasting these events is the management of the massive amounts of data associated with an ice season. This study couples ontological and machine learning models in a new hybrid modeling framework to predict spring breakup on a national scale. The Ice Season Ontology sorts the data and allows for a user‐friendly means of analyzing any ice season, providing insight on which variables are most and least central. With this, a refined variable selection is able to be made for machine learning models. The most successful developed model, a random forest, produced highly accurate forecasts when applied to a national scale case study, with a mean absolute error of 10.85 days and an R2 of .884. This new modeling framework provides a means for decision‐making support for river bound communities and a new methodology for modeling applications in other fields.
Subject
Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction