Resveratrol‐coated chitosan mats promote angiogenesis for enhanced wound healing in animal model

Author:

Moghaddam Asma12ORCID,Nejaddehbashi Fereshteh1ORCID,Orazizadeh Mahmoud12ORCID

Affiliation:

1. Cellular and Molecular Research Center, Medical Basic Sciences Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

2. Department of Anatomical Sciences, School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

Abstract

AbstractBackgroundGrowing incidences of chronic wounds recommend the development of optimal therapeutic wound dressings. Electrospun nanofibers have been considered to show potential wound healing properties when accompanied by other wound dressing materials. This study aimed to explore the potential role of Chitosan (CS) nanofibrous mats coated with resveratrol (RS) as an antioxidant and pro‐angiogenic agent in rat models of skin wound healing.MethodsElectrospun chitosan/polyethylene oxide (PEO) nanofibers were prepared using electrospinning technology and coated by 0.05 and 0.1 mg.ml resveratrol named as (CS/RS 0.05) and (CS/RS 0.1), respectively. The scaffolds were characterized physiochemically such as in vitro release study, TGA, FTIR spectroscopy analysis, biodegradability, and human dermal fibroblast seeding assay. The scaffold was subsequently used in vivo as a skin substitute on a rat skin wound model.ResultsIn vitro tests revealed that all scaffolds promoted cell adhesion and proliferation. However, more cell viability was observed in CS/RS 0.1 scaffold. The biocompatibility of the scaffolds was validated by MTT assay, and the results did not show any toxic effects on human dermal fibroblasts. It was observed that RS‐coated scaffolds had the ability to release RS in a controlled manner. In in vivo tests CS/RS 0.1 scaffold had the greatest impact on the healing process by improving the neodermis formation and modulated inflammation in wound granulation tissue. Histological analysis revealed enhanced vascular endothelial growth factor expression, epithelialization and increased depth of wound granulation tissue.ConclusionsThe RS‐coated CS/PEO nanofibrous scaffold accelerates wound healing and may be useful as a dressing for cell transfer and clinical skin regeneration.

Funder

Ahvaz Jundishapur University of Medical Sciences

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polyphenol encapsulated nanofibers in wound healing and drug delivery;European Journal of Medicinal Chemistry Reports;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3