Ion uptake and distribution in sweet potato genotypes subjected to salt stress is not driven by transpiration

Author:

Mondal Shimul1ORCID,Rahaman Ebna Habib Md Shofiur2,Asch Folkard1ORCID

Affiliation:

1. University of Hohenheim, Institute of Agricultural Sciences in the Tropics (Hans‐Ruthenberg‐Institute) Stuttgart Germany

2. International Potato Center Dhaka Bangladesh

Abstract

AbstractPotassium is taken up actively by the plant, whereas sodium is often either competing for the same uptake mechanisms or uptake and distribution are driven by the transpirational volume flow in the shoots of plants grown under salinity. Reducing transpiration rate is regarded as an adaptation mechanism to reduce leaf tissue salt load. In combination with a high K uptake, plants may be able to maintain growth and are, thus, seen as salt‐tolerant. Little is known about these mechanisms in sweet potato (Ipomoea batatas L.). Therefore, cuttings of two sweet potato genotypes contrasting in salinity tolerance (CIP 188002.1, tolerant; CIP 189151.8, sensitive) were subjected to 0 and 50 mM NaCl root zone salinity in a hydroponic system and grown under low (0.76 kPa) and high (2.27 kPa) vapour pressure deficit (VPD) to create differences in transpiration. After 18 days of initial hydroponic growth, NaCl was added for another 33 days. Cumulative plant water loss and total uptake of Na, K and Cl were determined for all plants and treatments. Transpirational water loss was twice as high under high VPD as compared to low VPD conditions, but genotypic Na and Cl accumulation remained almost the same. In contrast to plants subjected to salt stress under low VPD conditions, genotypes under high VPD conditions differed significantly in transpiration. However, in both genotypes transpirational water loss from individual leaves and Na or Cl accumulation were not correlated, under high VPD younger leaves of CIP 188002.1 (tolerant) accumulated more than twice as much potassium than in CIP 189151.8 (sensitive). The distribution of the three ions across leaf positions and within one leaf position between petiole and leaf blade differed strongly between the two genotypes. Tolerant CIP 188002.1 accumulated up to five times more sodium and potassium in the leaf petioles in the middle‐aged and young leaf positions than in the leaf blade, whereas in sensitive CIP 189151.8 neither ion was preferentially accumulated in the petioles. This was independent of salinity treatment and VPD conditions. In contrast, hyperaccumulation of Cl in petioles only occurred under high VPD conditions in the petioles of the tolerant genotype, but not under low VPD conditions, indicating a VPD sensitivity for Cl distribution in sweet potato. While we conclude that transpirational volume flow is not a main driving force for Na and Cl uptake and distribution within the plant, we discuss potential pathways leading to the hyperaccumulation of sodium and potassium in the leaf petioles of the tolerant genotype. We suggest studies on HKT transporter activities in the petioles as an object of further studies in sweet potato.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science

Reference40 articles.

1. Different Effect of Humidity on Growth and Salt Tolerance of Two Soybean Cultivars

2. Carbohydrate Depletion in Roots and Leaves of Salt-Stressed Potted Citrus clementina L.

3. Effects of transpiration on sodium and potassium distribution in salt‐stressed irrigated rice;Asch F.;Journal of Experimental Botany,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3