Rapid and large changes in coastal wetland structure in China's four major river deltas

Author:

Wang Xinxin1ORCID,Xiao Xiangming2ORCID,Zhang Xi1ORCID,Wu Jihua3ORCID,Li Bo4ORCID

Affiliation:

1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco‐Chongming, School of Life Sciences Fudan University Shanghai China

2. Department of Microbiology and Plant Biology, Center for Earth Observation and Modeling University of Oklahoma Norman Oklahoma USA

3. State Key Laboratory of Grassland Agro‐Ecosystems, and College of Ecology Lanzhou University Lanzhou China

4. Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology Institute of Biodiversity, School of Ecology and Environmental Science Yunnan University Kunming China

Abstract

AbstractCoastal wetlands provide essential ecosystem goods and services but are extremely vulnerable to sea‐level rise, extreme climate, and human activities, especially the coastal wetlands in large river deltas, which are regarded as “natural recorders” of changes in estuarine environments. In addition to the area (loss or gain) and quality (degradation or improvement) of coastal wetlands, the information on coastal wetland structure (e.g., patch size and number) are also major metrics for coastal restoration and biodiversity protection, but remain very limited in China's four major river deltas. In this study, we quantified the spatial–temporal dynamics of total area (TA) and patch number (PN) of coastal wetlands with different sizes in the four deltas and the protected areas (PAs) and assessed the effects of major driving factors during 1984–2020. We also investigated the effectiveness of PAs through the comparison of TA and PN of coastal wetlands before and after the years in which PAs were listed as Ramsar Sites. We found both TA and PN experienced substantial losses in the Liaohe River Delta and Yellow River Delta but recent recoveries in the Yangtze River Delta. The coastal wetlands had a relatively stable and variable trend in TA but had a continually increasing trend in PN in the Pearl River Delta. Furthermore, reduced coastal reclamation, ecological restoration projects, and rapid expansion of invasive plants had great impacts on the coastal wetland structure in various ways. We also found that PAs were effective in halting the decreasing trends in coastal wetland areas and slowing the expansion of reclamation, but the success of PAs is being counteracted by soaring exotic plant invasions. Our findings provide vital information for the government and the public to address increasing challenges of coastal restoration, management, and sustainability in large river deltas.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3