Partial Matching of Nonrigid Shapes by Learning Piecewise Smooth Functions

Author:

Bensaïd David1,Rotstein Noam1,Goldenstein Nelson1,Kimmel Ron1

Affiliation:

1. Technion ‐ Israel Institute of Technology

Abstract

AbstractLearning functions defined on non‐flat domains, such as outer surfaces of non‐rigid shapes, is a central task in computer vision and geometry processing. Recent studies have explored the use of neural fields to represent functions like light reflections in volumetric domains and textures on curved surfaces by operating in the embedding space. Here, we choose a different line of thought and introduce a novel formulation of partial shape matching by learning a piecewise smooth function on a surface. Our method begins with pairing sparse landmarks defined on a full shape and its part, using feature similarity. Next, a neural representation is optimized to fit these landmarks, efficiently interpolating between the matched features that act as anchors. This process results in a function that accurately captures the partiality. Unlike previous methods, the proposed neural model of functions is intrinsically defined on the given curved surface, rather than the classical embedding Euclidean space. This representation is shown to be particularly well‐suited for representing piecewise smooth functions. We further extend the proposed framework to the more challenging part‐to‐part setting, where both shapes exhibit missing parts. Comprehensive experiments highlight that the proposed method effectively addresses partiality in shape matching and significantly outperforms leading state‐of‐the‐art methods in challenging benchmarks. Code is available at https://github.com/davidgip74/Learning-Partiality-with-Implicit-Intrinsic-Functions

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-spectral Geometric Approach for Shape Analysis;Journal of Mathematical Imaging and Vision;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3