Model‐based Crowd Behaviours in Human‐solution Space

Author:

Xiang Wei1ORCID,Wang He2ORCID,Zhang Yuqing1ORCID,Yip Milo K.3ORCID,Jin Xiaogang1ORCID

Affiliation:

1. State Key Lab of CAD&CG Zhejiang University Hangzhou China

2. School of Computing University of Leeds Leeds UK

3. MoreFun Studios Tencent Shenzhen China

Abstract

AbstractRealistic crowd simulation has been pursued for decades, but it still necessitates tedious human labour and a lot of trial and error. The majority of currently used crowd modelling is either empirical (model‐based) or data‐driven (model‐free). Model‐based methods cannot fit observed data precisely, whereas model‐free methods are limited by the availability/quality of data and are uninterpretable. In this paper, we aim at taking advantage of both model‐based and data‐driven approaches. In order to accomplish this, we propose a new simulation framework built on a physics‐based model that is designed to be data‐friendly. Both the general prior knowledge about crowds encoded by the physics‐based model and the specific real‐world crowd data at hand jointly influence the system dynamics. With a multi‐granularity physics‐based model, the framework combines microscopic and macroscopic motion control. Each simulation step is formulated as an energy optimization problem, where the minimizer is the desired crowd behaviour. In contrast to traditional optimization‐based methods which seek the theoretical minimizer, we designed an acceleration‐aware data‐driven scheme to compute the minimizer from real‐world data in order to achieve higher realism by parameterizing both velocity and acceleration. Experiments demonstrate that our method can produce crowd animations that are more realistically behaved in a variety of scales and scenarios when compared to the earlier methods.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3