Affiliation:
1. Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital Fujian Medical University Fuzhou China
2. Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital Fujian Medical University Fuzhou China
3. Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital Fujian Medical University Fuzhou China
Abstract
ABSTRACTAims/IntroductionThis study investigated the roles of voltage‐dependent anion channel 1‐related differentially expressed genes (VRDEGs) in diabetic nephropathy (DN).Materials and MethodsWe downloaded two datasets from patients with DN, namely, GSE30122 and GSE30529, from the Gene Expression Omnibus database. VRDEGs associated with DN were obtained from the intersection of voltage‐dependent anion channel 1‐related genes from the GeneCards database, and differentially expressed genes were screened according to group (DN/healthy) in the two datasets. The enriched pathways of the VRDEGs were analyzed. Hub genes were selected using a protein–protein interaction network, and their predictive value was verified through receiver operating characteristic curve analysis. The CIBERSORTx software examined hub genes and immune cell infiltration associations. The protein expression of hub genes was verified through immunohistochemistry in 16‐week‐old db/db mice for experimentation as a model of type 2 DN. Finally, potential drugs targeting hub genes that inhibit DN development were identified.ResultsA total of 57 VRDEGs were identified. The two datasets showed high expression of the PI3K, Notch, transforming growth factor‐β, interleukin‐10 and interleukin‐17 pathways in DN. Five hub genes (ITGAM, B2M, LYZ, C3 and CASP1) associated with DN were identified and verified. Immunohistochemistry showed that the five hub genes were highly expressed in db/db mice, compared with db/m mice. The infiltration of immune cells was significantly correlated with the five hub genes.ConclusionsFive hub genes were significantly correlated with immune cell infiltration and might be crucial to DN development. This study provides insight into the mechanisms involved in the pathogenesis of DN.
Subject
General Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献