Predictive modelling of stress, anxiety and depression: A network analysis and machine learning study

Author:

Ganai Umer Jon1ORCID,Sachdev Shivani1,Bhushan Braj1

Affiliation:

1. Department of Humanities and Social Sciences Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India

Abstract

AbstractObjectiveThis study assessed predictors of stress, anxiety and depression during the COVID‐19 pandemic using a large number of demographic, COVID‐19 context and psychological variables.MethodsData from 741 adults were drawn from the Boston College daily sleep and well‐being survey. Baseline demographics, the long version of the daily surveys and the round one assessment of the survey were utilized for the present study. A Gaussian graphical model (GGM) was estimated as a feature selection technique on a subset of ordinal/continuous variables. An ensemble Random Forest (RF) machine learning algorithm was used for prediction.ResultsGGM was found to be an efficient feature selection method and supported the findings derived from the RF machine learning model. Psychological variables were significant predictors of stress, anxiety and depression, while demographic and COVID‐19‐related factors had minimal predictive value. The outcome variables were mutually predictive of each other, and negative affect and subjective sleep quality were the common predictors of these outcomes of stress, anxiety, and depression.ConclusionThe study identifies risk factors for adverse mental health outcomes during the pandemic and informs interventions to mitigate the impact on mental health.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3