Reuterin isolated from the probiotic Lactobacillus reuteri promotes periodontal tissue regeneration by inhibiting Cx43‐mediated the intercellular transmission of endoplasmic reticulum stress

Author:

Han Nannan12ORCID,Liu Yitong12,Li Xiaoyan12,Du Juan12,Guo Lijia3,Liu Yi12ORCID

Affiliation:

1. Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University Beijing P. R. China

2. Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital Capital Medical University Beijing P. R. China

3. Department of Orthodontics, School of Stomatology Capital Medical University Beijing P. R. China

Abstract

AbstractObjectiveThe present study aimed to evaluate the effects of reuterin, a bioactive isolated from the probiotic Lactobacillus reuteri (L. reuteri) on periodontal tissue regeneration, and provide a new strategy for periodontitis treatment in the future.BackgroundData discussing the present state of the field: Probiotics are essential for maintaining oral microecological balance. Our previous study confirmed that probiotic L. reuteri extracts could rescue the function of mesenchymal stem cells (MSCs) and promote soft tissue wound healing by neutralizing inflammatory Porphyromonas gingivalis—LPS. Periodontitis is a chronic inflammatory disease caused by bacteria seriously leading to tooth loss. In this study, we isolated and purified reuterin from an extract of L. reuteri to characterize from the extracts of L. reuteri to characterize its role in promoting periodontal tissue regeneration and controlling inflammation in periodontitis.MethodsChromatographic analysis was used to isolate and purify reuterin from an extract of L. reuteri, and HNMR was used to characterize its structure. The inflammatory cytokine TNFα was used to simulate the inflammatory environment. Periodontal ligament stem cells (PDLSCs) were treated with TNFα and reuterin after which their effects were characterized using scratch wound cell migration assays to determine the concentration of reuterin, an experimental periodontitis model in rats was used to investigate the function of reuterin in periodontal regeneration and inflammation control in vivo. Real‐time PCR, dye transfer experiments, image analysis, alkaline phosphatase activity, Alizarin red staining, cell proliferation, RNA‐sequencing and Western Blot assays were used to detect the function of PDLSCs.ResultsIn vivo, local injection of reuterin promoted periodontal tissue regeneration of experimental periodontitis in rats and reduced local inflammatory response. Moreover, we found that TNFα stimulation caused endoplasmic reticulum (ER) stress in PDLSCs, which resulted in decreased osteogenic differentiation. Treatment with reuterin inhibited the ER stress state of PDLSCs caused by the inflammatory environment and restored the osteogenic differentiation and cell proliferation functions of inflammatory PDLSCs. Mechanistically, we found that reuterin restored the functions of inflammatory PDLSCs by inhibiting the intercellular transmission of ER stress mediated by Cx43 in inflammatory PDLSCs and regulated osteogenic differentiation capacity.ConclusionOur findings identified reuterin isolated from extracts of the probiotic L. reuteri, which improves tissue regeneration and controls inflammation, thus providing a new therapeutic method for treating periodontitis.

Funder

Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support

National Natural Science Foundation of China

Publisher

Wiley

Subject

Periodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3