Identification of antibacterial metabolites produced by a marine bacterium Halobacillus marinus HMALI004

Author:

Ali Sardar1,Cai Runlin1ORCID,Feng Hao1,Xie Jianmin1,Zhang Yueling12,Wang Hui12

Affiliation:

1. Biology Department and Institute of Marine Sciences College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University Shantou China

2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China

Abstract

Abstract Aims This study examined and characterized the extract for metabolites of Halobacillus marinus HMALI004 to understand their antibacterial activities against opportunistic marine pathogens, that is, Vibrio parahaemolyticus and Vibrio cholerae. Methods and Results The bacterial strain HMALI004 was characterized as H. marinus, and an antibacterial spectral test revealed its inhibition against two opportunistic marine pathogens (V. parahaemolyticus and V. cholera). Fermentation broth of strain HMALI004 was subjected to column chromatography and high-performance liquid chromatography to separate antibacterial substances. Two compounds were successfully isolated and identified as 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid by mass spectrometry (MS) and nuclear magnetic resonance. The minimal inhibition concentration (MIC) values of 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid for V. parahaemolyticus were 25 μg/ml, while their MIC values for V. cholerae were 50 and 100 μg/ml, respectively. The reactive oxygen species (ROS) production of two pathogen strains treated with 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid were detected to investigate the antimicrobial mechanism. The results suggested that 4-chloro-1H-pyrrole-2-carboxylic acid exerted enhanced ROS production in V. parahaemolyticus, whereas 1H-pyrrole-2-carboxylic acid had a weaker effect. Both compounds caused a significant rise in ROS production in V. cholerae, causing severe damage to the cell wall and cytoplasm, leading to cell death. Conclusions The bacterium H. marinus HMALI004 was isolated from a shrimp pond and was found to produce antimicrobial compounds, which could inhibit the growth of opportunistic marine pathogens V. parahaemolyticus and V. cholerae by increasing ROS. Significance and Impact of the Study Successfully isolated antibacterial-producing strain, H. marinus HMALI004, and its antimicrobial compounds could be used as biological control agents for marine pathogens.

Funder

2020 Li Ka Shing Foundation (LKSF) Cross-Disciplinary Research Grant

Guangdong Basic and Applied Basic Research Foundation

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Scientific Research Foundation of Shantou University

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3