Helper NLRs Nrc2 and Nrc3 act codependently with Prf/Pto and activate MAPK signaling to induce immunity in tomato

Author:

Zhang Ning12ORCID,Gan Joyce1,Carneal Lauren1,González‐Tobón Juliana2ORCID,Filiatrault Melanie23ORCID,Martin Gregory B.12ORCID

Affiliation:

1. Boyce Thompson Institute for Plant Research Ithaca New York 14853 USA

2. Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant Science Cornell University Ithaca New York 14853 USA

3. United States Department of Agriculture‐Agricultural Research Service Ithaca New York 14853 USA

Abstract

SUMMARYPlant intracellular immune receptors, primarily nucleotide‐binding, leucine‐rich repeat proteins (NLRs), detect pathogen effector proteins and activate NLR‐triggered immunity (NTI). Recently, ‘sensor’ NLRs have been reported to function with ‘helper’ NLRs to activate immunity. We investigated the role of two helper NLRs, Nrc2 and Nrc3, on immunity in tomato to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) mediated by the sensor NLR Prf and the Pto kinase. An nrc2/nrc3 mutant no longer activated Prf/Pto‐mediated NTI to Pst containing the effectors AvrPto and AvrPtoB. An nrc3 mutant showed intermediate susceptibility between wild‐type plants and a Prf mutant, while an nrc2 mutant developed only mild disease. These observations indicate that Nrc2 and Nrc3 act additively in Prf‐/Pto‐mediated immunity. We examined at what point Nrc2 and Nrc3 act in the Prf/Pto‐mediated immune response. In the nrc2/3 mutant, programmed cell death (PCD) normally induced by constitutively active variants of AvrPtoB, Pto, or Prf was abolished, but that induced by M3Kα or Mkk2 was not. PCD induced by a constitutively active Nrc3 was also abolished in a Nicotiana benthamiana line with reduced expression of Prf. MAPK activation triggered by expression of AvrPto in the wild‐type tomato plants was completely abolished in the nrc2/3 mutant. These results indicate that Nrc2 and Nrc3 act with Prf/Pto and upstream of MAPK signaling. Nrc2 and Nrc3 were not required for PCD triggered by Ptr1, another sensor NLR‐mediating Pst resistance, although these helper NLRs do appear to be involved in resistance to certain Pst race 1 strains

Funder

National Science Foundation

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3