High‐magnesium calcite skeletons provide magnesium for burrow‐selective dolomitization in Cretaceous carbonates

Author:

Liu Hangyu1ORCID,Shi Kaibo1,Liu Bo1,Li Yong2,Li Yang3,Zheng Haofu45,Peng Yuting1,Fu Yingxiao1

Affiliation:

1. School of Earth & Space Sciences Peking University Beijing 100871 China

2. Research Institute of Petroleum Exploration and Development PetroChina Beijing 100083 China

3. SINOPEC Petroleum Exploration and Production Research Institute Beijing 102206 China

4. Institute of Geotechnical Engineering Chongqing Jiaotong University Chongqing 400074 China

5. Department of Mineralogy, Petrology and Applied Geology University of Barcelona Barcelona Catalonia 08007 Spain

Abstract

ABSTRACTThe source and pumping mechanism of magnesium play crucial roles in dolomitization. The preferential dolomitization of burrows has been extensively documented in geological archives. Although burrows are abundantly preserved in Cretaceous carbonates, burrow‐selective dolomitization is uncommon in normal salinity marine environments due to the low Mg/Ca ratio of seawater. However, burrow‐selective dolomitization occurred in the Cenomanian Rumaila Formation carbonates of the Arabian Platform providing an excellent example to further clarify the mechanism and explore other potential Mg sources of burrow‐elective dolomitization. Integrated studies of petrography, stable isotope geochemistry and laser ablation–inductively coupled plasma–mass spectrometry‐based in situ element geochemistry were conducted. It was found that the burrow‐selective dolomitization exclusively occurred in echinoderm fragment‐filled Thalassinoides networks which occurred as Glossifungites ichnofacies. Burrow dolomites showed fine to medium crystalline and planar subhedral to euhedral textures with cloudy centres and clear rims. They exhibited relatively greater Mn, lower Sr and Fe concentrations, no or very weak negative Ce anomaly and middle rare earth element‐bulge patterns, and are slightly enriched with occasionally depleted δ13C and comparable δ18O relative to the surrounding calcite matrix. The initial high‐Mg calcite echinoderm fragments in burrows have been stabilized to low‐Mg calcite, and echinoderm syntaxial overgrowth calcite cement was practically nonexistent. Echinoderm fragments were frequently replaced by dolomite in part or whole. Undolomitized echinoderms have negative Ce anomaly and seawater‐like rare earth element patterns, as well as very low Mn, Fe and relatively greater Sr concentrations. These suggest that echinoderm stabilization occurred in fluid unsaturated with respect to high‐Mg calcite driven by aerobic decomposition of organic matter in oxic seawater near the sediment–water interface, meanwhile, Mg ions were liberated into pore water. This process pre‐dated the dolomitization allowing the Mg derived from echinoderm to raise the Mg/Ca ratio of burrow interstitial water. The dolomites in burrows were generated by initial replacement and subsequent overgrowth cementation associated with bacterial sulphate reduction and methanogenesis in low‐temperature and suboxic to anoxic fluids in the near‐surface realm, and faintly recrystallized as burial depth increased. This study sheds light on the echinoderm stabilization process, links the early diagenesis of skeletons to burrow dolomitization, and proposes a conceptual model illustrating that high‐Mg calcite skeletons could act as a major Mg source for burrow‐selective dolomitization, which compensates for the deficiency of Mg in normal low Mg/Ca ratio Cretaceous seawater. This study implies the interaction effect and element cycle among components in early diagenetic systems, and verifies that high‐Mg calcite is indeed a non‐negligible potential Mg source for partial or elective dolomitization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Stratigraphy,Geology,General Medicine

Reference207 articles.

1. Dolomite genesis in bioturbated marine zones of an early-middle Miocene coastal mud volcano outcrop (Kuwait)

2. Dolomite reservoirs. Geochemical techniques for evaluating origin and distribution;Allan J.R.;AAPG Cont. Educ. Course Note Ser.,1993

3. MID-CRETACEOUS RUDIST-BEARING CARBONATES OF THE MISHRIF FORMATION: AN IMPORTANT RESERVOIR SEQUENCE IN THE MESOPOTAMIAN BASIN, IRAQ

4. The dorag dolomitization model, application to the middle Ordovician of Wisconsin;Badiozamani K.;J. Sediment. Res.,1973

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3