PPARγ regulates lipid metabolism and viability of sheep trophoblast cells

Author:

Hao Kexing1ORCID,Liu Xiuxia2,Chen Yan1,Zeng Weibin1,Chen Lei1,Wang Jing1,Hu Guangdong1

Affiliation:

1. College of Animal Science and Technology Shihezi University Shihezi China

2. Shihezi University School of Medicine, Shihezi University Shihezi China

Abstract

AbstractPeroxisome proliferator‐activated receptor γ (PPARγ) is highly expressed in trophoblast tissues in pregnancy during which the protein participates in diverse events, including embryo implantation and placental formation. However, little is known about the role of PPARγ in embryonic development. This study investigated the function of PPARγ in sheep trophoblast cells. The coding sequence of sheep PPARγ encoded 475 amino acids and included one synonymou mutation compared with the sheep reference sequence for PPARγ. The PPARγ protein was localized in the nucleus and cytoplasm of sheep trophoblasts. The relative expression of PPARγ was elevated in cells treated with rosiglitazone and reduced following administration of GW9662. Activation of PPARγ promoted cell proliferation and mobility, but inhibited apoptosis. In addition, stimulation of PPARγ promoted the expression of lipid metabolism‐related genes FABP4 and PLIN2. The expression of prostaglandin metabolism‐related genes PLA2G4A, PTGS2 and PTGES also was upregulated significantly in trophoblast cells when PPARγ was activated. In contrast, activation of PPARγ did not impact expression of the prostaglandin‐related genes PGFS and SLCO2A1. At the same time, activation of PPARγ activity increased the ratio of PGE2 to PGF2α. Furthermore, fluorescence labelling showed that the numbers of cell lipid droplets increased after stimulation of PPARγ activity, but decreased when PPARγ was inhibited. In conclusion, PPARγ is critical for the regulation of lipid metabolism and prostaglandin synthesis and secretion in sheep trophoblast cells and also has a potent effect on cell proliferation and viability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Endocrinology,Animal Science and Zoology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3