Affiliation:
1. Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences Fujian Normal University Fuzhou China
2. State Key Laboratory of Humid Subtropical Mountain Ecology Fuzhou China
3. Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing China
4. Department of Environmental Sciences University of California Riverside California USA
Abstract
AbstractIt is widely accepted that phosphorus (P) limits microbial metabolic processes and thus soil organic carbon (SOC) decomposition in tropical forests. Global change factors like elevated atmospheric nitrogen (N) deposition can enhance P limitation, raising concerns about the fate of SOC. However, how elevated N deposition affects the soil priming effect (PE) (i.e., fresh C inputs induced changes in SOC decomposition) in tropical forests remains unclear. We incubated soils exposed to 9 years of experimental N deposition in a subtropical evergreen broadleaved forest with two types of 13C‐labeled substrates of contrasting bioavailability (glucose and cellulose) with and without P amendments. We found that N deposition decreased soil total P and microbial biomass P, suggesting enhanced P limitation. In P unamended soils, N deposition significantly inhibited the PE. In contrast, adding P significantly increased the PE under N deposition and by a larger extent for the PE of cellulose (PEcellu) than the PE of glucose (PEglu). Relative to adding glucose or cellulose solely, adding P with glucose alleviated the suppression of soil microbial biomass and C‐acquiring enzymes induced by N deposition, whereas adding P with cellulose attenuated the stimulation of acid phosphatase (AP) induced by N deposition. Across treatments, the PEglu increased as C‐acquiring enzyme activity increased, whereas the PEcellu increased as AP activity decreased. This suggests that P limitation, enhanced by N deposition, inhibits the soil PE through varying mechanisms depending on substrate bioavailability; that is, P limitation regulates the PEglu by affecting soil microbial growth and investment in C acquisition, whereas regulates the PEcellu by affecting microbial investment in P acquisition. These findings provide new insights for tropical forests impacted by N loading, suggesting that expected changes in C quality and P limitation can affect the long‐term regulation of the soil PE.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
National Science Foundation
Subject
General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献