Variation in gut microbial contribution of essential amino acids to host protein metabolism in a wild small mammal community

Author:

Besser Alexi C.12ORCID,Manlick Philip J.13ORCID,Blevins Christina M.1,Takacs‐Vesbach Cristina D.1,Newsome Seth D.1ORCID

Affiliation:

1. Department of Biology University of New Mexico Albuquerque New Mexico USA

2. School of Earth and Space Exploration Arizona State University Tempe Arizona USA

3. Pacific Northwest Research Station, USDA Forest Service Juneau Alaska USA

Abstract

AbstractHerbivory is a dominant feeding strategy among animals, yet herbivores are often protein limited. The gut microbiome is hypothesized to help maintain host protein balance by provisioning essential macromolecules, but this has never been tested in wild consumers. Using amino acid carbon (δ13C) and nitrogen (δ15N) isotope analysis, we estimated the proportional contributions of essential amino acids (AAESS) synthesized by gut microbes to five co‐occurring desert rodents representing herbivorous, omnivorous and insectivorous functional groups. We found that herbivorous rodents occupying lower trophic positions (Dipodomys spp.) routed a substantial proportion (~40%–50%) of their AAESS from gut microbes, while higher trophic level omnivores (Peromyscus spp.) and insectivores (Onychomys arenicola) obtained most of their AAESS (~58%) from plant‐based energy channels but still received ~20% of their AAESS from gut microbes. These findings empirically demonstrate that gut microbes play a key functional role in host protein metabolism in wild animals.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A missing trophic link: Contribution of the microbial loop to the estimation of the trophic position of pelagic consumers;Limnology and Oceanography;2023-10-26

2. Teeth and the gastrointestinal tract in mammals: when 1 + 1 = 3;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3