The formation of an inclusion complex between a metabolite of ginsenoside, compound K and γ-cyclodextrin and its dissolution characteristics

Author:

Igami Kentaro1,Ozawa Masatoshi2,Inoue Sae2,Iohara Daisuke3,Miyazaki Toshitsugu1,Shinoda Masamitsu2,Anraku Makoto3,Hirayama Fumitoshi3,Uekama Kaneto3

Affiliation:

1. Research and Development Center, Nagase & Co., Kobe, Hyogo, Japan

2. Research and Development Dept., Nagase Medicals Co., Itami, Hyogo, Japan

3. Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan

Abstract

Abstract Objectives 20S-protopanaxadiol 20-O-β-D-glucopyranoside (compound K), a metabolite of ginsenoside, is only sparingly soluble in water. The aim of this study was to improve the low solubility, slow dissolution rate and low oral bioavailability of compound K by forming an inclusion complex with γ-cyclodextrin (γ-CyD), and to compare the results with those of β-CyD complex. Methods The interactions of compound K with β and γ-CyDs were studied by the solubility method and proton nuclear magnetic resonance spectroscopy. Solid forms of compound K/CyD complexes with different molar ratios were prepared by the kneading method, and the resulting complex was characterized by powder X-ray diffractometry. The dissolution rate of the complexes was measured by the rotary disk method. In-vivo absorption studies in rats were carried out, and the serum level of compound K, after its oral administration, was measured by a liquid chromatography-tandem mass spectrometry system. Key findings γ-CyD markedly improved the low solubility of compound K at lower CyD concentrations (<0.03 M), whereas the solubility was decreased at higher concentrations (>0.06 m). The enhancement in solubility by γ-CyD at a lower concentration was much higher than the corresponding values for β-CyD. The apparent 1:1 stability constant (1.5 × 105m−1) for the γ-CyD complex was 18-fold larger than that (8.2 × 103m−1) of the β-CyD complex. The dissolution rate of the 1:1 compound K/γ-CyD complex was faster than that for the 1:3 (guest : host) complex. These results suggest that the dissolution rate of the 1:1 complex, in which the drug is partially included, was faster than that of the 1:3 complex, in which the drug was completely included, due to the higher solubility and amorphous property of the former complex compared with the properties of the latter complex. The fast dissolution of the γ-CyD complex was reflected in the maximum plasma level (Cmax) of the drug and the time (Tmax) to reach the maximum plasma level after its oral administration to rats. Conclusions The effect of γ-CyD on enhancing the solubility of compound K is much higher than that for the β-CyD complex, and the dissolution rate of the guest when it is partially included in the γ-CyD is faster the corresponding value when it is completely included in the cavity.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3