ShenKang injection suppresses kidney fibrosis and oxidative stress via transforming growth factor-β/Smad3 signalling pathway in vivo and in vitro

Author:

Wu Xiaoxiao1,Guan Yue1,Yan Jiajia1,Liu Meiyou1,Yin Ying1,Duan Jialin1,Wei Guo1,Hu Tianxin1,Weng Yan1,Xi Miaomiao1,Wen Aidong1

Affiliation:

1. Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China

Abstract

Abstract Objectives The purpose of this study is to investigate the antifibrosis and antioxidation of ShenKang injection (SKI) in vivo and in vitro and to evaluate potential mechanisms involved in the treatment of chronic kidney disease (CKD). Methods In experimental animal studies, CKD was established by 5/6 nephrectomy (5/6Nx). Serum creatinine (Scr) and blood urea nitrogen (BUN) were determined. Histopathological tests were performed by H&E and Masson trichrome stained. The protein expressions of fibronectin (FN), collagen Ι, α-smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β) and phosphorylation of Smad3 were measured in 5/6Nx rats. In Human kidney proximal tubular cell line (HK-2) cells, the effects of TGF-β/Smad3 signalling pathway on renal fibrosis and oxidative injury were examined. Key findings 5/6Nx induced severe renal damages. Treatment of rats with SKI markedly reduced levels of Scr and BUN, alleviated expression of fibrosis-associated signalling molecules and reduced expression of TGF-β and phosphorylated Smad3. Meanwhile, in HK-2 cells, after exposure to TGF-β and H2O2, the protein expression of renal fibrosis was significantly increased. The generation of oxidative stress was also elevated. The severity of fibrosis and oxidative damage appears to be reduced after treatment with SKI. Conclusion SKI inhibits renal fibrosis and oxidative stress through downregulation of TGF-β/Smad3 signalling pathway.

Funder

National Natural Science Foundation of China

Xijing Research Boosting Program

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3