Substitution of mineral N fertilizers with organic wastes in two long‐term field experiments: Dynamics and drivers of crop yields

Author:

Chen Haotian1ORCID,Levavasseur Florent1ORCID,Houot Sabine1ORCID

Affiliation:

1. INRAE, AgroParisTech, Université Paris‐Saclay, UMR ECOSYS Palaiseau France

Abstract

AbstractOrganic wastes (OW) are rich in nutrients, and their recycling into agriculture can substitute chemical fertilizers. The level of substitution (partial with mineral fertilizer or exclusive with only OW), along with the method, amount, and timing of OW application, as well as the crop type, can impact crop productivity. The temporal dynamics of crop productivity after repeated applications of OW remain uncertain. Thus, two French long‐term field experiments (QualiAgro and PROspective, started in 1998 and 2000, respectively) were used to evaluate the effect of repeated OW applications on crop yield dynamics and investigate the potential driving factors affecting crop yields. Six different OW were applied: urban sewage sludge (SLU), green waste and SLU compost (GWS), biowaste compost (BIO), municipal solid waste compost (MSW), farmyard manure (FYM), and composted FYM (FYMC). The OW were applied every 2 years in QualiAgro (~4 t C ha−1) and PROspective (~1.7 t C ha−1). QualiAgro was studied under high and low mineral N conditions, while PROspective was examined with and without mineral N fertilization. The results indicated that at the QualiAgro site, a combination of OW and high mineral N treatments resulted in higher maize and wheat yields compared to the mineral N control, while the combination of OW and low mineral N reached the same maize and wheat yield as the mineral N control after 3 and 6 applications of OW, respectively. At the PROspective site, partially substituting mineral fertilizer with OW maintained maize yields but decreased wheat yields, while full substitution led to a decrease in both maize and wheat yields compared to the mineral N control. Results from the gradient boosting model (GBM) showed that soil total N rather than mineral N input was the primary driver of the relative maize yield, while mineral N fertilizer input was more critical for wheat during the second year. We conclude that the joined use of OW and mineral fertilizers is superior to using OW or mineral fertilizer alone for maintaining high yields and soil fertility. We further suggest that OW full substitution of mineral fertilizer may need to apply OW more frequently to meet the crop demands, and/or to use OW with higher N availability like digestates.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3