Widespread controls of leaf nutrient resorption by nutrient limitation and stoichiometry

Author:

Sun Xibin1ORCID,Li Dejun2ORCID,Lü Xiaotao3ORCID,Fang Yunting3,Ma Zilong1ORCID,Wang Zhenchuan4,Chu Chengjin1ORCID,Li Meimei1,Chen Hao1ORCID

Affiliation:

1. State Key Laboratory of Biocontrol, School of Ecology Shenzhen Campus of Sun Yat‐sen University Shenzhen 518107 Guangdong China

2. Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture Chinese Academy of Sciences Huanjiang 547100 Guangxi China

3. CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 Liaoning China

4. Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education Nanning Normal University Nanning 530001 Guangxi China

Abstract

Abstract Leaf nutrient resorption is a key process in nutrient cycles, but fundamental knowledge regarding its control mechanisms remains limited. Among the three proposed basic control mechanisms on leaf nutrient resorption, namely nutrient concentration control, nutrient limitation control and stoichiometry control, only the first has been demonstrated to exist globally, while the latter two have not been systematically evaluated. Here, we conducted a global data synthesis to explore nutrient limitation and stoichiometry control on leaf resorption of carbon, nitrogen, phosphorus, sulphur, potassium, calcium and magnesium, based on 3395 data points from 109 peer‐reviewed studies. Results showed that the nutrient limitation control existed globally, but was only applicable for the resorption of nitrogen, phosphorus and potassium. The stoichiometry control existed globally for carbon and all studied nutrients, and coexisted with nutrient limitation control. Conifers' resorption relied primarily on stoichiometry control rather than nutrient limitation control. Nutrient limitation control was stronger in evergreen angiosperms than in deciduous angiosperms. Our findings support the ubiquity of both nutrient limitation and stoichiometry in controlling leaf resorption for multiple nutrients, such that these controls should be considered in Earth system models to better predict biogeochemical cycles in terrestrial ecosystems. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3