Different patterns and drivers of fungal communities between phyllosphere and rhizosphere in alpine grasslands

Author:

Li Yang1ORCID,Tian Dashuan12ORCID,Pan Junxiao1ORCID,Zhou Benjamin3,Zhang Ruiyang1ORCID,Song Lei1ORCID,Wang Jinsong12ORCID,Niu Shuli12ORCID

Affiliation:

1. Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. International School of Beijing Beijing China

Abstract

Abstract Epiphytic fungi are vital in enhancing their host plant performance and can also cause plant diseases. Generally, phyllosphere fungal community are majorly driven by climate, while rhizosphere fungal community are determined by soil properties and spatial distance. However, the differences in the relative effects of environmental factors on fungal community compositions and network structures remain far from clear between phyllosphere and rhizosphere. In this study, we conducted a large‐scale field survey along a 1400 km transect in the Tibetan Plateau and explored the composition and structure of phyllosphere and rhizosphere fungal communities from two dominant grass species (Leontopodium nanum and Stipa purpurea). L. nanum is widely distributed in relatively wet areas of alpine grasslands but S. purpurea prefers relatively dry areas. The geographical distributions of these two species overlap in the middle of the transect First, we found that precipitation was more important than temperature to affect fungal alpha diversity. High precipitation significantly promoted fungal alpha diversity in both phyllosphere and rhizosphere. Second, climate and spatial variables explained more variations in fungal community in the phyllosphere than rhizosphere. Specifically, greater precipitation promoted the relative abundances of pathotrophic fungi in the phyllosphere and rhizosphere, whereas lower precipitation only stimulated the relative abundances of symbiotrophic fungi in the rhizosphere. Third, precipitation had different impacts on phyllosphere and rhizosphere fungal networks between host species. Drought caused lower node number of fungal networks in the phyllosphere and rhizosphere of L. nanum. However, for S. purpurea, drought led to more complex and positive fungal networks in the phyllosphere and rhizosphere. Overall, these results indicated that precipitation caused different fungal community compositions along the transect between phyllosphere and rhizosphere, but consistently shaped their fungal networks. This study is among the first to provide compelling evidence on the large‐scale spatial variations and controlling factors for epiphytic fungal community in alpine grasslands. These new findings help to understand the role of epiphytic fungal community in affecting the functions of alpine grasses to cope with extreme environments. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3