Landscape composition and pollinator traits interact to influence pollination success in an individual‐based model

Author:

Kortsch Susanne1ORCID,Saravia Leonardo2ORCID,Cirtwill Alyssa R.1ORCID,Timberlake Thomas3ORCID,Memmott Jane3ORCID,Kendall Liam4ORCID,Roslin Tomas156ORCID,Strona Giovanni57ORCID

Affiliation:

1. Spatial Foodweb Ecology Group, Department of Agricultural Sciences, Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland

2. Centro Austral de Investigaciones Científicas del Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC‐CONICET) Ushuaia Argentina

3. School of Biological Sciences University of Bristol Bristol UK

4. Centre for Environmental and Climate Science Lund University Lund Sweden

5. Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

6. Department of Ecology Swedish Agricultural University Uppsala Sweden

7. European Commission Joint Research Centre Ispra Italy

Abstract

Abstract The arrangement of plant species within a landscape influences pollination via changes in pollinator movement trajectories and plant–pollinator encounter rates. Yet the combined effects of landscape composition and pollinator traits (especially specialisation) on pollination success remain hard to quantify empirically. We used an individual‐based model to explore how landscape and pollinator specialisation (degree) interact to influence pollination. We modelled variation in the landscape by generating gradients of plant species intermixing—from no mixing to complete intermixing. Furthermore, we varied the level of pollinator specialisation by simulating plant–pollinator (six to eight species) networks of different connectance. We then compared the impacts of these drivers on three proxies for pollination: visitation rate, number of consecutive visits to the focal plant species and expected number of plants pollinated. We found that the spatial arrangements of plants and pollinator degree interact to determine pollination success, and that the influence of these drivers on pollination depends on how pollination is estimated. For most pollinators, visitation rate increases in more plant mixed landscapes. Compared to the two more functional measures of pollination, visitation rate overestimates pollination service. This is particularly severe in landscapes with high plant intermixing and for generalist pollinators. Interestingly, visitation rate is less influenced by pollinator traits (pollinator degree and body size) than are the two functional metrics, likely because ‘visitation rate’ ignores the order in which pollinators visit plants. However, the visitation sequence order is crucial for the expected number of plants pollinated, since only prior visits to conspecific individuals can contribute to pollination. We show here that this order strongly depends on the spatial arrangements of plants, on pollinator traits and on the interaction between them. Taken together, our findings suggest that visitation rate, the most commonly used proxy for pollination in network studies, should be complemented with more functional metrics which reflect the frequency with which individual pollinators revisit the same plant species. Our findings also suggest that measures of landscape structure such as plant intermixing and density—in combination with pollinators' level of specialism—can improve estimates of the probability of pollination. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Science Foundation

Sveriges Lantbruksuniversitet

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3