A three‐dimensional approach to general plant fire syndromes

Author:

Jaureguiberry Pedro1ORCID,Díaz Sandra1

Affiliation:

1. Instituto Multidisciplinario de Biología Vegetal (CONICET‐Universidad Nacional de Córdoba) and FCEFyN Córdoba Argentina

Abstract

Abstract Plant fire syndromes are usually defined as combinations of fire response traits, the most common being resprouting (R) and seeding (S). Plant flammability (F), on the other hand, refers to a plant's effects on communities and ecosystems. Despite its important ecological and evolutionary implications, F has rarely been considered to define plant fire syndromes and, if so, usually separated from response syndromes. We propose a three‐dimensional model that combines R, S and F, encapsulating both plant response to fire regimes and the capacity to promote them. Each axis is divided into three possible standardized categories, reflecting low, medium and high values of each variable, with a total of 27 possible combinations of R, S and F. We hypothesized that different fire histories should be reflected in the position of species within the three‐dimensional space, and that this should help assess the importance of fire as an evolutionary force in determining R‐S‐F syndromes. To illustrate our approach, we compiled information on the fire syndromes of 24 dominant species of different growth forms from the Chaco seasonally dry forest of central Argentina, and we compared them to 33 species from different Mediterranean‐type climate ecosystems (MTCEs) of the world. Chaco and MTCEs species differed in the range (7 syndromes vs. 13 syndromes, respectively) and proportion of extreme syndromes (i.e. species with extreme values of R, S and/or F) representing 29% of species in the Chaco vs. 45% in the MTCEs. In addition, we explored the patterns of R, S and F of 4032 species from seven regions with contrasting fire histories, and found significantly higher frequencies of extreme values (predominantly high) of all three variables in MTCEs compared to the other regions, where intermediate and low values predominated, broadly supporting our general hypothesis. The proposed three‐dimensional approach should help standardize comparisons of fire syndromes across taxa, growth forms and regions with different fire histories. This will contribute to the understanding of the role of fire in the evolution of plant traits and assist vegetation modelling in the face of changes in fire regimes. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Fondo para la Investigación Científica y Tecnológica

Inter-American Institute for Global Change Research

Newton Fund

Universidad Nacional de Córdoba

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Reference151 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3