Soil microbial legacies influence freeze–thaw responses of soil

Author:

Pastore Melissa A.12ORCID,Classen Aimée T.234ORCID,English Marie E.1,Frey Serita D.5ORCID,Knorr Melissa A.5,Rand Karin1,Adair E. Carol12ORCID

Affiliation:

1. Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA

2. Gund Institute for Environment University of Vermont Burlington Vermont USA

3. Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA

4. University of Michigan Biological Station Pellston Michigan USA

5. Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA

Abstract

Abstract Warmer winters with less snowfall are increasing the frequency of soil freeze–thaw cycles across temperate regions. Soil microbial responses to freeze–thaw cycles vary and some of this variation may be explained by microbial conditioning to prior winter conditions, yet such linkages remain largely unexplored. We investigated how differences in temperature history influenced microbial community composition and activity in response to freeze–thaw cycles. We collected soil microbial communities that developed under colder (high elevation) and warmer (low elevation) temperature regimes in spruce‐fir forests, then added each of these soil microbial communities to a sterile bulk‐soil in a laboratory microcosm experiment. The inoculated high‐elevation cold and low‐elevation warm microcosms were subjected to diurnal freeze–thaw cycles or constant above‐freezing temperature for 9 days. Then, all microcosms were subjected to a 7‐day above‐freezing recovery period. Overall, we found that the high‐elevation cold community had, relative to the low‐elevation warm community, a smaller reduction in microbial respiration (CO2 flux) during freeze–thaw cycles. Further, the high‐elevation cold community, on average, experienced lower freeze–thaw‐induced bacterial mortality than the warm community and may have partly acclimated to freeze–thaw cycles via increased lipid membrane fluidity. Respiration of both microbial communities quickly recovered following the end of the freeze–thaw treatment period and there were no changes in soil extractable carbon or nitrogen. Our results provide evidence that past soil temperature conditions may influence the responses of soil microbial communities to freeze–thaw cycles. The microbial community that developed under a colder temperature regime was more tolerant of freeze–thaw cycles than the community that developed under a warmer temperature regime, although both communities displayed some level of resilience. Taken together, our data suggest that microbial communities conditioned to less extreme winter soil temperatures may be most vulnerable to rapid changes in freeze–thaw regimes as winters warm, but they also may be able to quickly recover if mortality is low. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Science Foundation of Sri Lanka

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3