Elevational variations in stem hydraulic efficiency and safety of Abies fabri

Author:

Tang Zishu1ORCID,Zhai Biying1,Wang Genxu1,Gessler Arthur23,Sun Shouqin1ORCID,Hu Zhaoyong12ORCID

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower Sichuan University Chengdu China

2. Research Unit Forest Dynamics, Swiss Federal Research Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

3. Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland

Abstract

Abstract The structural and functional traits of coniferous trees can reflect their growth states and adaptive strategies to a harsh environment. However, it is still unclear if and how hydraulic traits of subalpine conifers change with altitude. Therefore, the changes in stem hydraulic characteristics of Abies fabri along an elevational gradient (2700–3700 m a.s.l.) were identified in a subalpine ecosystem in southwest China and linked to anatomical properties. Xylem hydraulic efficiency decreased with increasing elevation. Surprisingly, higher hydraulic dysfunction and vulnerability to embolism occurred at higher altitudes. The trade‐off between hydraulic efficiency and safety was weak in A. fabri at higher elevations. Low temperature and superfluous precipitation may be the main constraints for hydraulic function and mechanical strength ((t/b)2)) in plants at high elevations (p < 0.05). The strongly limited hydraulic transport system reflected the severe growth constraint of A. fabri at high elevations. Although series of anatomical traits varied with elevation (e.g. smaller mean diameter of tracheid, mean hydraulic conduit diameter and mean pit aperture diameter at higher altitude) and revealed the adaptive strategies to enhance embolism resistance, thickness‐to‐span ratio ((t/b)2) played a dominant role in the trade‐off between hydraulic efficiency and safety. Thickness‐to‐span ratio was positively correlated with stem hydraulic conductivity but negatively correlated with percent loss of conductivity and water potential at 50% loss of conductivity, (t/b)2 and specific leaf area. Therefore, plants with better hydraulic and growth states at low elevations could allocate more resources to building up solid mechanical supporting systems to cope with high wind load, while those at high elevations with impaired growth states and limited hydraulic functions had to invest more resources in leaves under the harsh environment. The weak trade‐off between hydraulic efficiency and safety (lower hydraulic efficiency and high risk of embolism) could limit the growth and distribution of A. fabri at timberlines; however, global warming trends may facilitate hydraulic transport and benefit plants' growth in the future. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3