Age matters: Older Alnus viridis ssp. fruticosa are more sensitive to summer temperatures in the Alaskan Arctic

Author:

Drew Jackson W.12ORCID,Bret‐Harte Marion S.12ORCID,Buchwal Agata3ORCID,Heslop Calvin1ORCID

Affiliation:

1. Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska USA

2. Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA

3. Institute of Geoecology and Geoinformation Adam Mickiewicz University Poznan Poland

Abstract

Abstract The Arctic is rapidly warming, and tundra vegetation community composition is changing from small, prostrate shrubs to taller, erect shrubs in some locations. Across much of the Arctic, the sensitivity of shrub secondary growth, as measured by growth ring width, to climate has changed with increased warming, but it is not fully understood how shrub age contributes to shifts in climate sensitivity. We studied Siberian alder, Alnus viridis ssp. fruticosa, a large nitrogen‐fixing shrub that has responded to climate warming with northward range expansion over the last 50 years. We used serial sectioning of 26 individual shrubs and 94 cross‐sections to generate a 98‐year growth ring chronology, including one 142‐year‐old, Siberian alder in Northern Alaska. We tested how secondary growth sensitivity to climate has changed over the past century (1920–2017) and how shrub age affects climate sensitivity of alder growth through time. We found that over time, alder growth as expressed by the stand chronology became more sensitive to July mean monthly air temperature. Older shrubs displayed higher sensitivity to June and July temperature than younger alders. However, during the first 30 years of growth of any shrub, temperature sensitivity did not differ among individuals. In addition, the June temperature sensitivity of growth series from individual cross‐sections depended on the age of the attached shrub. Our results suggest that age contributes to climate sensitivity, likely through modifying internal shrub carbon budgets by changing size and reducing alder's dependence on N‐fixation over time. Older, more sensitive alder may enhance C and N‐cycling while having greater recruitment potential. Linking alder age to climate sensitivity, recruitment and total N‐inputs will enable us to better predict ecosystem carbon and nitrogen cycling in a warmer Arctic. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Division of Environmental Biology

Office of Polar Programs

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3