Pathways of glyphosate effects on litter decomposition in grasslands

Author:

Vivanco Lucía1ORCID,Sánchez María Victoria1,Druille Magdalena1,Omacini Marina1

Affiliation:

1. IFEVA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía Buenos Aires Argentina

Abstract

AbstractGrasslands store a third of global terrestrial carbon but are vulnerable to carbon loss due to inappropriate livestock grazing. Grasslands management can be improved with a mechanistic understanding of biogeochemical processes that determine carbon storage, such as plant litter decomposition.Herbicides, such as glyphosate, are used to improve the quantity and quality of the forage. In the Flooding Pampa, the most extensive cattle grazed natural grassland and one of the few remnants' temperate grasslands in South America—glyphosate is applied to promoteLolium multiflorum, a forage grass associated with a fungal endophyte nontoxic for cattle.We studied five mechanistic pathways in which the application of glyphosate can alter litter decomposition. We grouped them into single application pathways, through effects on living plants (1), leaf litter (2) and bare soil (3), and repeated annual application pathways, through legacies on ecosystem properties (4) and through the growth of an annual forage grass with a fungal endophyte (5). Single application pathways were tested in a greenhouse experiment using leaf litter ofL. multiflorumand of a native dominant grass. Repeated annual application pathways were tested through a field experiment with 3‐year annual glyphosate application using leaf and root litter ofL. multiflorumwith and without endophyte association.Glyphosate application on living plants produced leaf litter with 70% higher nitrogen content and 140% higher decomposition constant than naturally senesced litter. In contrast, glyphosate application on naturally senesced leaf litter reduced decomposition constant by 20%. Glyphosate application on the soil did not affect the decomposition of naturally senesced leaf litter but accelerated the decomposition of the glyphosate‐killed plants even more.Legacies of repeated annual application of glyphosate resulted in a notable reduction in plant cover (45%) and potential soil respiration (57%), with a consistent acceleration of leaf (53%) and root (18%) litter decomposition. Furthermore, endophytes inL. multiflorumplants reduced leaf litter decomposition by 22%. On the contrary, endophytes did not alter root litter decomposition.Glyphosate application on living plants and legacies of repeated application on the ecosystem stimulate litter decomposition, which can result in a net carbon loss from grasslands. In other ecosystems, the net result on decomposition would depend on the relative cover of vegetation, above‐ground litter and bare soil. This study highlights that glyphosate application should be considered when evaluating sustainable management to preserve and enhance soil carbon storage in grasslands.Read the freePlain Language Summaryfor this article on the Journal blog.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3