Thermal plasticity has higher fitness costs among thermally tolerant genotypes of Tigriopus californicus

Author:

Bogan Samuel N.1ORCID,Porat Olivia I.1,Meneses Michael J.12ORCID,Hofmann Gretchen E.1ORCID

Affiliation:

1. University of California Santa Barbara California USA

2. Woods Hole Oceanographic Institution Woods Hole Massachusetts USA

Abstract

Abstract Under climate change, ectotherms will likely face pressure to adapt to novel thermal environments by increasing their upper thermal tolerance and its plasticity, a measure of thermal acclimation. Ectotherm populations with high thermal tolerance are often less thermally plastic, a trade‐off hypothesized to result from (i) a phenotypic limit on thermal tolerance above which plasticity cannot further increase the trait, (ii) negative genetic correlation or (iii) fitness trade‐offs between the two traits. Whether each hypothesis causes negative associations between thermal tolerance and plasticity has implications for the evolution of each trait. We empirically tested the limit and trade‐off hypotheses by leveraging the experimental tractability and thermal biology of the intertidal copepod Tigriopus californicus. Using populations from four latitudinally distributed sites in coastal California, six lines per population were reared under a laboratory common garden for two generations. Ninety‐six full sibling replicates (n = 4–5 per line) from a third generation were developmentally conditioned to 21.5 and 16.5°C until adulthood. We then measured the upper thermal tolerance and fecundity of sibships at each temperature. We detected a significant trade‐off in fecundity, a fitness corollary, between baseline thermal tolerance and its plasticity. Tigriopus californicus populations and genotypes with higher thermal tolerance were less thermally plastic. We detected negative directional selection on thermal plasticity under ambient temperature evidenced by reduced fecundity. These fitness costs of plasticity were significantly higher among thermally tolerant genotypes, consistent with the trade‐off hypothesis. This trade‐off was evident under ambient conditions, but not high temperature. Observed thermal plasticity and fecundity were best explained by a model incorporating both the limit and trade‐off hypotheses rather than models with parameters associated with one hypothesis. Effects of population and family on tolerance and plasticity negatively covaried, suggesting that a negative genetic correlation could not be ruled as contributing to negative associations between the traits. Our study provides a novel empirical test of the fitness trade‐off hypothesis that leverages a strong inference approach. We discuss our results' insights into how thermal adaptation may be constrained by physiological limits, genetic correlations, and fitness trade‐offs between thermal tolerance and its plasticity. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Division of Integrative Organismal Systems

Office of Polar Programs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3