Pushing the limits of C3 intrinsic water use efficiency in Mediterranean semiarid steppes: Responses of a drought‐avoider perennial grass to climate aridification

Author:

Ren Wei123,García‐Palacios Pablo4,Soliveres Santiago56ORCID,Prieto Iván17ORCID,Maestre Fernando T.56,Querejeta José Ignacio1ORCID

Affiliation:

1. Centro de Edafología y Biología Aplicada del Segura Consejo Superior de Investigaciones Científicas (CEBAS, CSIC) Murcia Spain

2. Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences Southwest University Chongqing China

3. Institute of International Rivers and Eco‐Security Yunnan University Kunming China

4. Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas Madrid Spain

5. Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef” Universidad de Alicante Alicante Spain

6. Departamento de Ecología Universidad de Alicante Alicante Spain

7. Departamento de Biodiversidad y Gestión Ambiental Universidad de León León Spain

Abstract

Abstract Intrinsic water use efficiency (WUEi) reflects the trade‐off between photosynthetic carbon gain and water loss through stomatal conductance and is key for understanding dryland plant responses to climate change. Stipa tenacissima is a perennial tussock C3 grass with an opportunistic, drought‐avoiding water use strategy that dominates arid and semiarid steppes across the western Mediterranean region. However, its ecophysiological responses to aridification and woody shrub encroachment, a major land‐use change in drylands worldwide, are not well‐understood. We investigated the variations in leaf stable isotopes (δ18O, δ13C, δ15N), nutrient concentrations (N, P, K), and culm water content and isotopic composition (δ18O, δ2H) of paired pure‐grass and shrub‐encroached S. tenacissima steppes along a 350 km aridity gradient in Spain (10 sites, 160 individuals). Culm water isotopes revealed that S. tenacissima is a shallow‐rooted grass that depends heavily on recent rainwater for water uptake, which may render it vulnerable to increasingly irregular rainfall combined with faster topsoil drying under climate warming and aridification. With increasing aridity, S. tenacissima enhanced leaf‐level WUEi through more stringent stomatal regulation of plant water flux and carbon assimilation (higher δ13C and δ18O), reaching exceptionally high δ13C values (−23‰ to −21‰) at the most arid steppes. Foliar N concentration was remarkably low across sites regardless of woody shrub encroachment, evidencing severe water and N co‐limitation of photosynthesis and productivity. Shrub encroachment decreased leaf P and K but did not affect S. tenacissima water status. Perennial grass cover decreased markedly with both declining winter rainfall and shrub encroachment suggesting population‐level rather than individual‐level responses of S. tenacissima to these changes. The fundamental physiological constraints of photosynthetic C3 metabolism combined with low foliar N content may hamper the ability of S. tenacissima and other drought‐avoider species with shallow roots to achieve further adaptive improvements in WUEi under increasing climatic stress. A drought‐avoiding water use strategy based on early stomatal closure and photosynthesis suppression during prolonged rainless periods may thus compromise the capacity of semiarid S. tenacissima steppes to maintain perennial grass cover, sustain productivity and cope with ongoing climate aridification at the drier parts of their current distribution. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Ministerio de Ciencia e Innovación

Fundación BBVA

Universidad Rey Juan Carlos

European Research Council

Generalitat Valenciana

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundación Séneca

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3