Measuring functional redundancy using generalized Hill numbers

Author:

Dick Daniel G.12ORCID

Affiliation:

1. Department of Chemical and Physical Sciences University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada

2. Translational Biology and Engineering Program Ted Rogers Centre for Heart Research, University of Toronto 661 University Avenue Toronto Ontario M5G 1M1 Canada

Abstract

Abstract A number of metrics for quantifying the amount of functional redundancy in a community have been proposed over the years. Two of the most popular metrics are based on comparing a taxonomic diversity measure with a generalized form of the same measure that accounts for functional dissimilarities between taxa. These two metrics express redundancy as either an absolute or relative difference between the taxonomic diversity measure and its generalized form. Because they express the amount of redundancy in a community in terms of raw diversity values, both redundancy metrics are susceptible to the same issues that complicate the interpretation of most commonly used diversity indices. It is possible to overcome these issues by restating these two indices using a Hill numbers framework. As a growing number of authors have noted, these modified metrics provide a more intuitive quantitative definition of functional redundancy when used to rank communities. Beyond this intuitive definition, measuring redundancy in terms of Hill numbers allows researchers to control the influence of rare taxa on the output value, enabling ecologists to better predict how a community is expected to respond when exposed to an external perturbation that selectively eliminates rare or common taxa. Here I show that, of the two possible Hill number‐based redundancy metrics, the form based on a popular absolute redundancy metric is extremely sensitive to differences in taxonomic diversity and can provide a misleading picture of how much redundancy is present in a community. For this reason, I argue that Hill number‐based functional redundancy should be quantified using a relative metric that explicitly accounts for differences in effective taxonomic diversity. The proposed Hill number‐based relative redundancy measure is shown to provide a much more complete picture of the distribution of redundant taxa within a community, highlighting subtle patterns that are completely missed by the Hill number‐based absolute redundancy metric. I include open‐source R code for calculating the indices discussed here. Read the free Plain Language Summary for this article on the Journal blog.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3