Regulation of SETD2 maintains immune regulatory function in macrophages to suppress airway allergy

Author:

Zhang Lei1,Wang Junyi1,Liu Xiaoyu23,Xiao Xiaojun23,Liu Yu4,Huang Qinmiao4,Li Jing5,Li Guoping1,Yang Pingchang23ORCID

Affiliation:

1. Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University Chengdu China

2. Guangdong Provincial Key Laboratory of Regional Immunity and Diseases Shenzhen China

3. State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University Institute of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen China

4. Department of General Medicine Practice and Respirology Third Affiliated Hospital of Shenzhen University Shenzhen China

5. Department of Allergy, First Affiliated Hospital Guangzhou Medial University Guangzhou China

Abstract

AbstractSET domain‐containing 2 (SETD2) is a histone methyltransferase. It regulates the activity of H3K36me3 to enhance gene transcription. Macrophages (Mϕs) are one of the cell types involved in immune response. The purpose of this study is to clarify the role of SETD2 in regulating the immune property of Mϕ. The Mφs were isolated from the bronchoalveolar lavage fluid (BALF) and analysed through flow cytometry and RNA sequencing. A mouse strain carrying Mφs deficient in SETD2 was used. A mouse model of airway allergy was established with the ovalbumin/alum protocol. Less expression of SETD2 was observed in airway Mϕs in patients with allergic asthma. SETD2 of M2 cells was associated with the asthmatic clinical response. Sensitization reduced the expression of SETD2 in mouse respiratory tract M2 cells, which is associated with the allergic reaction. Depletion of SETD2 in Mφs resulted in Th2 pattern inflammation in the lungs. SETD2 maintained the immune regulatory ability in airway M2 cells. SETD2 plays an important role in the maintenance of immune regulatory property of airway Mφs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3