Discrete scale invariance connects geodynamo timescales

Author:

Jonkers A.R.T.1

Affiliation:

1. Department of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom. E-mail: jonkers@liv.ac.uk

Abstract

Summary The geodynamo exhibits a bewildering gamut of time-dependent fluctuations, on timescales from years to at least hundreds of millions of years. No framework yet exists that comprises all and relates each to all others in a quantitative sense. The technique of bootstrapped discrete scale invariance quantifies characteristic timescales of a process, based upon log-periodic fits of modulated power-law scaling of size-ranked event durations. Four independent geomagnetic data sets are analysed therewith, each spanning different timescales: the sequence of 332 known dipole reversal intervals (0–161 Ma); dipole intensity fluctuations (0–2 Ma); archeomagnetic secular variation (5000 B.C.–1950 A.D.); and historical secular variation (1590–1990 A.D.). Six major characteristic timescales are empirically attested: circa 1.43 Ma, 56 Ka, and 763, 106, 21 and 3 yr. Moreover, all detected wavelengths and phases of the detected scaling signatures are highly similar, suggesting that a single process underlies all. This hypothesis is reinforced by extrapolating the log-periodic scaling signal of any particular data set to higher timescales than observed, through which predictions are obtained for characteristic scales attested elsewhere. Not only do many confirm one another, they also predict the typical duration of superchrons and geomagnetic jerks. A universal scaling bridge describes the complete range of geodynamo fluctuation timescales with a single power law.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference76 articles.

1. Shell models of energy cascade in turbulence;Biferale;Ann. Rev. Fluid. Mech.,2003

2. Up and down cascade in a dynamo model: spontaneous symmetry breaking;Blanter;Phys. Rev. E,1999

3. Towards a physical understanding of the short-period secular variation;Bloxham;EGU Geophys. Res. Abstr.,2003

4. The origin of magnetic jerks;Bloxham;Nature,2002

5. Magnetohydrodynamics of the Earth's core;Braginsky;Geomag. Aeron.,1964

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3