Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses

Author:

Southworth John1

Affiliation:

1. Department of Physics, University of Warwick, Coventry CV4 7AL

Abstract

Abstract I present a homogeneous analysis of the transit light curves of 14 well-observed transiting extrasolar planets. The light curves are modelled using jktebop, random errors are measured using Monte Carlo simulations and the effects of correlated noise are included using a residual-permutation algorithm. The importance of stellar limb darkening on the light-curve solutions and parameter uncertainties is investigated using five different limb darkening laws and including different numbers of coefficients as fitted parameters. The linear limb darkening law cannot adequately fit the Hubble Space Telescope (HST) photometry of HD 209458, but the other four laws give very similar results to each other for all transit light curves. In most cases fixing the limb darkening coefficients at theoretically predicted values does not bias the results, but does cause the error estimates to be too small. The available theoretical limb darkening coefficients clearly disagree with empirical values measured from the HST light curves of HD 209458; limb darkening must be included as fitted parameters when analysing high-quality light curves. In most cases the results of my analysis agree with the values found by other authors, but the uncertainties I find can be significantly larger (by factors of up to 3). Despite these greater uncertainty estimates, the analyses of sets of independent light curves for both HD 189733 and HD 209458 lead to results which do not agree with each other. This discrepancy is worst for the ratio of the radii (6.7σ for HD 189733 and 3.7σ for HD 209458), which depends primarily on the depth of the transit. It is therefore not due to the analysis method but is present in the light curves. These underlying systematic errors cannot be detected from the reduced data alone unless at least three independent light curves are available for an individual planetary system. The surface gravities of transiting extrasolar planets are known to be correlated with their orbital periods. New surface gravity values, calculated from the light-curve results and the stellar spectroscopic orbits, show that this correlation is still present. New high-precision light curves are needed for HD 149026, OGLE-TR-10, OGLE-TR-56, OGLE-TR-132 and GJ 436, and new radial velocity curves for the XO-1, WASP-1, WASP-2 and the OGLE (Optical Gravitational Lensing Experiment) planetary systems.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 323 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3