Influence of the route of sensitization on local and systemic immune responses in a murine model of type I allergy

Author:

REPA A12,WILD C1,HUFNAGL K1,WINKLER B1,BOHLE B1,POLLAK A2,WIEDERMANN U1

Affiliation:

1. Department of Pathophysiology

2. Department of Paediatrics, Medical University of Vienna, Vienna, Austria

Abstract

SUMMARY The pathophysiological and immunological characteristics of allergic immune responses are controlled by a variety of factors. We have studied the extent to which the route of sensitization influences allergen-specific IgE synthesis and local airway inflammation using a mouse model of allergic sensitization to the major birch pollen allergen Bet v 1. Sensitization of BALB/c mice with recombinant (r)Bet v 1 was performed using intraperitoneal (IP), subcutaneous (SC) or aerosol (AS) sensitization protocols. Mice were analysed for allergen-specific serum antibodies by ELISA and IgE-dependent basophil degranulation. Proliferative responses and cytokine production of splenocytes were measured upon Bet v 1 stimulation in vitro. Bronchoalveolar lavages were performed after airway challenge with aerosolized birch pollen extract for assessment of eosinophilic airway inflammation and local cytokine production in vivo. Highest allergen specific IgE levels and IgE-dependent basophil degranulation were achieved using the SC route. High IL-5 production by spleen and lung cells was associated with pronounced eosinophilia in bronchoalveolar lavages. After IP sensitization, despite giving the highest IgG levels, only low IgE levels, basophil degranulation and IL-5 production were seen. On the other hand, AS sensitization, resulting in the lowest systemic IgE and IL-5 levels, led to a comparably strong airway inflammation as the SC route. Our finding that the route of sensitization can result in a dissociation of local and systemic immune responses may contribute to a better understanding of the pathogenesis of allergic diseases and help to develop new treatment strategies.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3